genetic differentiation
Recently Published Documents


TOTAL DOCUMENTS

3186
(FIVE YEARS 565)

H-INDEX

87
(FIVE YEARS 6)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Luca Vecchioni ◽  
Andrew C. Ching ◽  
Federico Marrone ◽  
Marco Arculeo ◽  
Peter J. Hundt ◽  
...  

We used a multi-locus phylogenetic approach (i.e., combining both mitochondrial and nuclear DNA fragments) to address some long-standing taxonomic inconsistencies within the diverse fish clade of Combtooth Blennies (Blenniidae—unranked clade Almadablennius). The obtained phylogenetic trees revealed some major inconsistencies in the current taxonomy of Parablennini, such as the paraphyletic status of the Salaria and Parablennius genera, casting some doubt regarding their actual phylogenetic relationship. Furthermore, a scarce-to-absent genetic differentiation was observed among the three species belonging to the genus Chasmodes. This study provides an updated taxonomy and phylogeny of the former genus Salaria, ascribing some species to the new genus Salariopsis gen. nov., and emphasizes the need for a revision of the genus Parablennius.


2022 ◽  
Author(s):  
Tiago da Silva Ribeiro ◽  
José A Galván ◽  
John E Pool

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and nearby sites. Selective sweeps come in different forms, and depending on the initial and final frequencies of a favored variant, very different patterns of genetic variation may be produced. If local selection favors an existing variant that had already recombined onto multiple genetic backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to detect using a typical windowed genome scan, even if the targeted variant becomes highly differentiated. We therefore used a simulation approach to investigate the power of SNP-level FST (specifically, the maximum SNP FST value within a window) to detect diverse scenarios of local adaptation, and compared it against whole-window FST and the Comparative Haplotype Identity statistic. We found that SNP FST had superior power to detect complete or mostly complete soft sweeps, but lesser power than window-wide statistics to detect partial hard sweeps. To investigate the relative enrichment and nature of SNP FST outliers from real data, we applied the two FST statistics to a panel of Drosophila melanogaster populations. We found that SNP FST had a genome-wide enrichment of outliers compared to demographic expectations, and though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes and functional categories. Our results suggest that SNP FST is highly complementary to typical window-based approaches for detecting local adaptation, and merits inclusion in future genome scans and methodologies.


2022 ◽  
Author(s):  
Francisco E. Fontúrbel ◽  
Gloria B. Rodríguez‐Gómez ◽  
José I. Orellana ◽  
Jorge Cortés‐Miranda ◽  
Noemí Rojas‐Hernández ◽  
...  

Author(s):  
Julita Minasiewicz ◽  
Emilia Krawczyk ◽  
Joanna Znaniecka ◽  
Lucie Vincenot ◽  
Ekaterina Zheleznaya ◽  
...  

AbstractSome plants abandoned photosynthesis and developed full dependency on fungi for nutrition. Most of the so-called mycoheterotrophic plants exhibit high specificity towards their fungal partners. We tested whether natural rarity of mycoheterotrophic plants and usual small and fluctuating population size make their populations more prone to genetic differentiation caused by restricted gene flow and/or genetic drift. We also tested whether these genetic characteristics might in turn shape divergent fungal preferences. We studied the mycoheterotrophic orchid Epipogium aphyllum, addressing the joint issues of genetic structure of its populations over Europe and possible consequences for mycorrhizal specificity within the associated fungal taxa. Out of 27 sampled E. aphyllum populations, nine were included for genetic diversity assessment using nine nuclear microsatellites and plastid DNA. Population genetic structure was inferred based on the total number of populations. Individuals from 17 locations were included into analysis of genetic identity of mycorrhizal fungi of E. aphyllum based on barcoding by nuclear ribosomal DNA. Epipogium aphyllum populations revealed high genetic diversity (uHe = 0.562) and low genetic differentiation over vast distances (FST = 0.106 for nuclear microsatellites and FST = 0.156 for plastid DNA). Bayesian clustering analyses identified only two genetic clusters, with a high degree of admixture. Epipogium aphyllum genets arise from panmixia and display locally variable, but relatively high production of ramets, as shown by a low value of rarefied genotypic richness (Rr = 0.265). Epipogium aphyllum genotype control over partner selection was negligible as (1) we found ramets from a single genetic individual associated with up to 68% of the known Inocybe spp. associating with the plant species, (2) and partner identity did not show any geographic structure. The absence of mosaicism in the mycorrhizal specificity over Europe may be linked to preferential allogamous habit of E. aphyllum and significant gene flow, which tend to promote host generalism.


Author(s):  
Ha Buer ◽  
Sa Rula ◽  
Zi Yuan Wang ◽  
Shu Fang ◽  
Yu´e Bai

AbstractPopulation genetic diversity contributes to the protection and utilization of germplasm resources, especially via genetic breeding. In the present study, start codon targeted polymorphism (SCoT) molecular markers were used to study the genetic diversity of 278 individuals from 10 Prunus sibirica L. populations in Inner Mongolia. A total of 289 polymorphic bands were amplified with 23 SCoT primers, showing a polymorphism percentage of 98.87% and an average of 12.6 polymorphic bands per primer. The SCoT21, SCoT32, and SCoT53 primers amplified up to 17 bands, and the polymorphism percentage was 100%. The minimum number of bands amplified by SCoT25 was 9, and the polymorphism percentage was 90%. Therefore, SCoT molecular markers were shown to be highly polymorphic and suitable for genetic diversity studies of P. sibirica in Inner Mongolia. The analysis of molecular variance showed that 39% of the observed genetic differentiation occurred among populations and 61% occurred within populations, indicating that the genetic differentiation within populations was greater than that among populations. The results of the unweighted pair-group method with an arithmetic cluster analysis, principal coordinate analysis and STRUCTURE analysis were basically the same and divided the 278 individuals from the 10 populations into 2 groups. The results indicated that the efficient SCoT molecular marker-based genetic diversity analysis of P. sibirica in Inner Mongolia can provide a reference for P. sibirica variety breeding and resource development.


2022 ◽  
Author(s):  
Beatrice Landoni ◽  
Pilar Suarez-Montes ◽  
Rico H. F. Habeahan ◽  
Adrian C. Brennan ◽  
Rocio Perez-Barrales

Background and Aims: Days to flowering initiation in species with large geographic distributions often correlate with latitude. Latitude reflects climatic gradients, but it is unclear if large-scale differentiation in flowering results from adaptation to local climate, and whether adaptation to local climate could constrain shifts in distribution and colonization of new environments. Methods: In its Western range in Europe, L. bienne populations were surveyed to describe latitudinal patterns of flowering initiation and determine its correlation with the local climate of populations. This was measured under standardized greenhouse conditions, with a vernalization experiment to learn if chilling advances flowering, and with a reciprocal transplant experiment at three sites along the latitudinal gradient, recording flowering at the central site and plant survival in all sites. Also, genetic differentiation of populations along the latitudinal range was studied using microsatellite markers. Key Results: Flowering initiation varied with latitude, with southern populations flowering earlier than northern populations. Latitude also predicted population response to vernalization, with chilling inducing a greater advance of flowering initiation in northern than southern populations. In general, plant survival in the reciprocal transplant experiment decreased with the geographic distance of populations to the experimental site and, at the central site, flowering initiation varied with latitude of origin. However, across experiments, the local climate of populations better predicted the differentiation in flowering initiation and vernalization response than latitude of origin. Finally, the microsatellite data revealed genetic differentiation of populations forming two groups that agree with a Mediterranean and Atlantic lineage. Conclusions: The consistent result across experiments of a latitudinal cline in flowering initiation and in the vernalization response suggests that flowering is under genetic regulation and yet dependent on particular environmental and climatic cues at local scale. However, the genetic differentiation suggests that past population history might influenced the flowering initiation patterns detected.


2022 ◽  
Vol 1 (1) ◽  
Author(s):  
S Volis ◽  
I Shulgina ◽  
B Dyuzgenbekova

Environmental variation can be large across a wide range of spatial scales resulting in complex patterns of local adaptation across species ranges. We analyzed the scale, genetic mechanism and direct climatic causes of local adaptation in a widely distributed grass Hordeum spontaneum. We performed artificial crosses of maternal plants representing the same Negev desert population with plants originating elsewhere. Pollen donors were plants from other Negev desert populations, non-desert Israeli populations sampled along an aridity gradient, and accessions covering the entire species range. Our study included planting of inter-population hybrids under favorable and simulated desert experimental conditions, followed by analysis of their performance, variation in adaptive traits and relationship with climatic parameters at sampling locations. The combined results of parental phenotypic variation and performance of hybrids were consistent with local selection, reflecting the importance of both regional and local climates. The adaptive genetic differentiation of barley desert populations had a complex architecture. None of the three effects (additive, dominance and epistasis) were fully responsible for this differentiation. Although genetic effects not related to extrinsic selection appear to contribute to genetic differentiation in barley, epistatic effects arising from local selection clearly predominated. The short-term effect of gene flow by pollen was generally negative, indicating that a majority of the new allele combinations created by recombination were maladaptive. However, the long-term effect of occasional pollen flow from other desert populations appears to be positive, as some new recombined genotypes were superior in fitness to the maternal plants even in the F2 generation.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fionn Ó Marcaigh ◽  
Darren P O'Connell ◽  
Kangkuso Analuddin ◽  
Adi Karya ◽  
Naomi Lawless ◽  
...  

2022 ◽  
Vol 147 (1) ◽  
pp. 62-69
Author(s):  
Phillip A. Wadl ◽  
Timothy A. Rinehart ◽  
Richard T. Olsen ◽  
Benjamin D. Waldo ◽  
Joseph H. Kirkbride

The genus Chionanthus, known as fringetrees, is a member of the olive family (Oleaceae). Chionanthus virginicus is an understory tree or shrub with a wide range in forests of the eastern United States and is used as an ornamental tree that is known to be free of insects and disease in the wild. The species is tolerant of a wide range of environmental conditions, and there is interest in developing new cultivars with improved horticultural traits, such as tree form or upright growth habit and superior flowering display that are widely adapted. To identify genepools in the native range of C. virginicus for use in breeding programs, the genetic diversity and population structure were assessed for 274 individuals from 12 locations in four states (Florida, Maryland, North Carolina, and Texas) using 26 simple sequence repeats (SSRs). An average of 12.54 alleles/locus were detected, allelic richness averaged 2.80. Genetic differentiation was 0.11, indicating moderate differentiation among subpopulations. Despite the high genetic diversity and low population differentiation, Bayesian clustering analysis identified six genetic groups that match the geographic distribution of collection sites. Analysis of molecular variance indicated that most (82%) of the variation is explained within individuals, and 11% and 7% of the variation is due to differences among individuals within populations and among populations. Analysis of isolation by distance across all samples showed a weak positive relationship between geographic distance and genetic distance. The C. virginicus samples analyzed in this study indicate there is sufficient diversity for germplasm collection for use in breeding programs. Given the relatively moderate genetic differentiation, there are not likely to be unique islands of genetic diversity that may be missed when gathering parental materials for a breeding program


Sign in / Sign up

Export Citation Format

Share Document