scholarly journals Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity

2019 ◽  
Author(s):  
Zhe Zhang ◽  
Peng Xiong ◽  
Tongchuan Zhang ◽  
Junfeng Wang ◽  
Jian Zhan ◽  
...  

ABSTRACTDespite the transcription of noncoding RNAs in 75% of the human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and inefficient 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5×104 single-to-triple mutants is sufficient to infer all 26 including nonhelical and noncanonical base pairs at the precision of a single false positive. The accurate inference, further confirmed by a twister ribozyme, is resulted from covariation analysis by utilizing both functional and nonfunctional variants for unsupervised learning, followed by restrained optimization. The result highlights the usefulness of deep mutational scanning for high-accuracy structural inference.

2019 ◽  
Vol 48 (3) ◽  
pp. 1451-1465 ◽  
Author(s):  
Zhe Zhang ◽  
Peng Xiong ◽  
Tongchuan Zhang ◽  
Junfeng Wang ◽  
Jian Zhan ◽  
...  

Abstract Despite the large number of noncoding RNAs in human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and time-consuming 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of &lt;5 × 104 single-to-triple mutants is sufficient to infer 25 of 26 base pairs including non-nested, nonhelical, and noncanonical base pairs with both sensitivity and precision at 96%. Such accurate inference was further confirmed by a twister ribozyme at 100% precision with only noncanonical base pairs as false negatives. The performance was resulted from analyzing covariation-induced deviation of activity by utilizing both functional and nonfunctional variants for unsupervised classification, followed by Monte Carlo (MC) simulated annealing with mutation-derived scores. Highly accurate inference can also be obtained by combining MC with evolution/direct coupling analysis, R-scape or epistasis analysis. The results highlight the usefulness of deep mutational scanning for high-accuracy structural inference of self-cleaving ribozymes with implications for other structured RNAs that permit high-throughput functional selections.


2012 ◽  
Vol 180 (2) ◽  
pp. 318-326 ◽  
Author(s):  
Ke Wang ◽  
Korrinn Strunk ◽  
Gongpu Zhao ◽  
Jennifer L. Gray ◽  
Peijun Zhang

Methods ◽  
2018 ◽  
Vol 138-139 ◽  
pp. 26-38 ◽  
Author(s):  
Antoine Loquet ◽  
Nadia El Mammeri ◽  
Jan Stanek ◽  
Mélanie Berbon ◽  
Benjamin Bardiaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document