scholarly journals Activity-dependent enhancement of presynaptic facilitation provides a cellular mechanism for the temporal specificity of classical conditioning in Aplysia.

1994 ◽  
Vol 1 (4) ◽  
pp. 243-257
Author(s):  
G A Clark ◽  
R D Hawkins ◽  
E R Kandel

A hallmark of many forms of classical conditioning is a precise temporal specificity: Learning is optimal when the conditioned stimulus (CS) slightly precedes the unconditioned stimulus (US), but the learning is degraded at longer or backward intervals, consistent with the notion that conditioning involves learning about predictive relationships in the environment. To further examine the cellular mechanisms contributing to the temporal specificity of classical conditioning of the siphon-withdrawal response in Aplysia, we paired action potential activity in siphon sensory neurons (the neural CS) with tail nerve shock (the US) at three critical time points. We found that CS-US pairings at short (0.5 sec) forward intervals produced greater synaptic facilitation at sensorimotor connections than did either 0.5-sec backward pairings or longer (5 sec) forward pairings, as reflected in a differential increase in both the amplitude and rate of rise of the synaptic potential. In the same preparations, forward pairings also differentially reduced the sensory neuron afterhyperpolarization relative to backward pairings, suggesting that changes in synaptic efficacy were accompanied by temporally specific changes in ionic currents in the sensory neurons. Additional experiments demonstrated that short forward pairings of sensory cell activity and restricted applications of the neuromodulatory transmitter serotonin (normally released by the US) differentially enhanced action potential broadening in siphon sensory neurons, relative to backward pairings. Taken together, these results suggest that temporally specific synaptic enhancement engages both spike-width-dependent and spike-width-independent facilitatory processes and that activity-dependent enhancement of presynaptic facilitation may contribute to both the CS-US sequence and proximity requirements of conditioning.

Neuron ◽  
2003 ◽  
Vol 37 (1) ◽  
pp. 135-147 ◽  
Author(s):  
Igor Antonov ◽  
Irina Antonova ◽  
Eric R. Kandel ◽  
Robert D. Hawkins

1985 ◽  
Vol 53 (3) ◽  
pp. 652-669 ◽  
Author(s):  
K. J. Gingrich ◽  
J. H. Byrne

The defensive gill-withdrawal reflex in Aplysia has proven to be an attractive system for analyzing the neural mechanisms underlying simple forms of learning such as habituation, sensitization, and classic conditioning. Previous studies have shown that habituation is associated with synaptic depression and sensitization with presynaptic facilitation of transmitter release from sensory neurons mediating the reflex. The synaptic depression, in turn, is associated with a decrease in Ca2+ currents in the sensory neurons, whereas presynaptic facilitation with increased Ca2+ currents produced indirectly by a decrease in a novel serotonergic sensitive K+ current. The present work represents an initial quantitative examination of the extent to which these mechanisms account for each of these types of synaptic plasticity. To address these issues a lumped parameter mathematical model of the sensory neuron release process was constructed. Major components of this model include Ca2+-channel inactivation, Ca2+-mediated neurotransmitter release and mobilization, and readily releasable and upstream feeding pools of neurotransmitter. In the model, release of neurotransmitter has a linear function of Ca2+ concentration and is not affected directly by residual Ca2+. The model not only simulates the data of synaptic depression and recovery from depression, but also qualitatively predicts other features of neurotransmitter release that it was not designed to fit. These include features of synaptic depression with high and low levels of transmitter release, posttetanic potentiation, a steep relationship between action potential duration and transmitter release, enhanced release produced by broadening the sensory neuron action potential (presynaptic facilitation), and dramatic synaptic depression with two closely spaced tetraethylammonium (TEA) spikes. The model cannot account fully for synaptic depression with empirically observed somatic Ca2+-current kinetics. Rather a large component of synaptic depression is due to reduction to the pools of releasable neurotransmitter (depletion). In the model when spike durations are greater than 15-20 ms, spike broadening produces little facilitation. However, when spike durations are more physiological, spike broadening leads to enhanced transmitter release.


1987 ◽  
Vol 57 (6) ◽  
pp. 1705-1715 ◽  
Author(s):  
K. J. Gingrich ◽  
J. H. Byrne

Recently, a novel cellular mechanism, activity-dependent neuromodulation, was identified in sensory neurons mediating the gill and tail withdrawal reflexes in Aplysia. This mechanism may explain associative learning on a behavioral level. The present study was designed to mathematically model subcellular events that may underlie this mechanism and to examine the ability of the model to fit available empirical data. In this associative model, the reinforcing or unconditioned stimulus (US) leads to non-specific enhancement of transmitter release from sensory neurons by activating a cAMP cascade. Spike activity in sensory neurons, the conditioned stimulus (CS), transiently elevates intracellular Ca2+. The CS-triggered increases of intracellular Ca2+ “primes” the cyclase and amplifies the US-mediated cAMP synthesis. As a result of pairing specific amplification of cAMP levels, transmitter release is enhanced beyond that produced by unpaired stimuli or by application of the US alone. The model is capable of fitting empirical data on activity-dependent neuromodulation and predicts a characteristic interstimulus interval (ISI) curve. At the subcellular level, the model's ISI function is related to the time course of the buffering of intracellular Ca2+. The magnitude and duration of the pairing specific enhancement of transmitter release is related to the levels and time course of intracellular cAMP stimulation.


2020 ◽  
Author(s):  
Salim Baigildin ◽  
Konstantin Ushenin ◽  
Aigul Fabarisova ◽  
Marat Bogdanov ◽  
Olga Solovyeva

2011 ◽  
Vol 50 (3) ◽  
pp. 578-581 ◽  
Author(s):  
Tamas Banyasz ◽  
Balazs Horvath ◽  
Zhong Jian ◽  
Leighton T. Izu ◽  
Ye Chen-Izu

Sign in / Sign up

Export Citation Format

Share Document