Linear transformations extract parameters of ionic currents and action potential features from pseudo-ECG in cardiomyocyte models

2020 ◽  
Author(s):  
Salim Baigildin ◽  
Konstantin Ushenin ◽  
Aigul Fabarisova ◽  
Marat Bogdanov ◽  
Olga Solovyeva
2011 ◽  
Vol 50 (3) ◽  
pp. 578-581 ◽  
Author(s):  
Tamas Banyasz ◽  
Balazs Horvath ◽  
Zhong Jian ◽  
Leighton T. Izu ◽  
Ye Chen-Izu

2010 ◽  
Vol 31 (12) ◽  
pp. 1553-1563 ◽  
Author(s):  
Yi-hung Chen ◽  
Pei-lin Lin ◽  
Hui-yu Hsu ◽  
Ya-ting Wu ◽  
Han-yin Yang ◽  
...  

1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


2015 ◽  
Vol 39 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Javier Rodriguez-Falces

A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity.


2006 ◽  
Vol 95 (5) ◽  
pp. 3113-3128 ◽  
Author(s):  
Carl Gold ◽  
Darrell A. Henze ◽  
Christof Koch ◽  
György Buzsáki

Although extracellular unit recording is typically used for the detection of spike occurrences, it also has the theoretical ability to report about what are typically considered intracellular features of the action potential. We address this theoretical ability by developing a model system that captures features of experimentally recorded simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons. We use the line source approximation method of Holt and Koch to model the extracellular action potential (EAP) voltage resulting from the spiking activity of individual neurons. We compare the simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons recorded in vivo with model predictions for the same cells reconstructed and simulated with compartmental models. The model accurately reproduces both the waveform and the amplitude of the EAPs, although it was difficult to achieve simultaneous good matches on both the intracellular and extracellular waveforms. This suggests that accounting for the EAP waveform provides a considerable constraint on the overall model. The developed model explains how and why the waveform varies with electrode position relative to the recorded cell. Interestingly, each cell's dendritic morphology had very little impact on the EAP waveform. The model also demonstrates that the varied composition of ionic currents in different cells is reflected in the features of the EAP.


1994 ◽  
Vol 1 (4) ◽  
pp. 243-257
Author(s):  
G A Clark ◽  
R D Hawkins ◽  
E R Kandel

A hallmark of many forms of classical conditioning is a precise temporal specificity: Learning is optimal when the conditioned stimulus (CS) slightly precedes the unconditioned stimulus (US), but the learning is degraded at longer or backward intervals, consistent with the notion that conditioning involves learning about predictive relationships in the environment. To further examine the cellular mechanisms contributing to the temporal specificity of classical conditioning of the siphon-withdrawal response in Aplysia, we paired action potential activity in siphon sensory neurons (the neural CS) with tail nerve shock (the US) at three critical time points. We found that CS-US pairings at short (0.5 sec) forward intervals produced greater synaptic facilitation at sensorimotor connections than did either 0.5-sec backward pairings or longer (5 sec) forward pairings, as reflected in a differential increase in both the amplitude and rate of rise of the synaptic potential. In the same preparations, forward pairings also differentially reduced the sensory neuron afterhyperpolarization relative to backward pairings, suggesting that changes in synaptic efficacy were accompanied by temporally specific changes in ionic currents in the sensory neurons. Additional experiments demonstrated that short forward pairings of sensory cell activity and restricted applications of the neuromodulatory transmitter serotonin (normally released by the US) differentially enhanced action potential broadening in siphon sensory neurons, relative to backward pairings. Taken together, these results suggest that temporally specific synaptic enhancement engages both spike-width-dependent and spike-width-independent facilitatory processes and that activity-dependent enhancement of presynaptic facilitation may contribute to both the CS-US sequence and proximity requirements of conditioning.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Tianruo Guo ◽  
Amr Al Abed ◽  
Nigel H. Lovell ◽  
Socrates Dokos

A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically detailed ionic membrane current description, is presented. The model provides a user-defined number of ionic currents, employing two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is incorporated into the optimisation.


Sign in / Sign up

Export Citation Format

Share Document