The Fundamental Band of Carbon Monoxide at4.7μin the Solar Spectrum

1949 ◽  
Vol 75 (7) ◽  
pp. 1108-1109 ◽  
Author(s):  
Marcel V. Migeotte
2011 ◽  
Vol 4 (2) ◽  
pp. 269-288 ◽  
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
D. P. Moore ◽  
H. Sembhi ◽  
...  

Abstract. This paper presents a new retrieval scheme for tropospheric carbon monoxide (CO), using measured radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. The University of Leicester IASI Retrieval Scheme (ULIRS) is an optimal estimation retrieval scheme, which utilises equidistant pressure levels and a floating pressure grid based on topography. It makes use of explicit digital elevation and emissivity information, and incorporates a correction for solar surface reflection in the daytime with a high resolution solar spectrum. The retrieval scheme has been assessed through a formal error analysis, via the simulation of surface effects and by an application to real IASI data over a region in Southern Africa. The ULIRS enables the retrieval of between 1 and 2 pieces of information about the tropospheric CO vertical profiles, with peaks in the sensitivity at approximately 5 and 12 km. Typical errors for the African region relating to the profiles are found to be ~20% at 5 and 12 km, and on the total columns to range from 18 to 34%. Finally the performance of the ULIRS is shown for a range of simulated geophysical conditions.


2008 ◽  
Author(s):  
Andrey A. Ionin ◽  
Andrey Yu. Kozlov ◽  
Leonid V. Seleznev ◽  
Dmitry V. Sinitsyn

2010 ◽  
Vol 3 (4) ◽  
pp. 3747-3802 ◽  
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
D. P. Moore ◽  
H. Sembhi ◽  
...  

Abstract. This paper presents a new retrieval scheme for tropospheric carbon monoxide (CO), using measured radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. The University of Leicester IASI Retrieval Scheme (ULIRS) is an optimal estimation retrieval scheme, which utilises equidistant pressure levels and a floating pressure grid based on topography. It makes use of explicit digital elevation and emissivity information, and incorporates a correction for solar surface reflection in the daytime with a high resolution solar spectrum. The retrieval scheme has been assessed through a formal error analysis, via the simulation of surface effects and by an application to real IASI data over a region in Southern Africa. The ULIRS enables the retrieval of between 1 and 2 pieces of information about the tropospheric CO vertical profiles, with peaks in the sensitivity at approximately 5 and 12 km. Typical errors for the African region relating to the profiles are found to be ~20% at 5 and 12 km, and on the total columns to range from 18 to 34%. Finally the performance of the ULIRS is shown for a range of simulated geophysical conditions.


2019 ◽  
Author(s):  
Oliver Schneising ◽  
Michael Buchwitz ◽  
Maximilian Reuter ◽  
Heinrich Bovensmann ◽  
John P. Burrows ◽  
...  

Abstract. Carbon monoxide (CO) is an important atmospheric constituent affecting air quality and methane (CH4) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadir viewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR) combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with unprecedented level of detail on a global scale introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4 are simultaneously retrieved from TROPOMI's radiance measurements in the 2.3 μm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified DOAS (WFM-DOAS). We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine learning-based quality filter and a shallow learning calibration procedure applied in the post-processing of the XCH4 data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier Transform Spectrometer (FTS) measurements providing realistic error estimates of the satellite data: The XCO data set is characterised by a random error of 5.1 ppb (5.7 %) and a systematic error of 1.9 ppb (2.1 %); the XCH4 data set exhibits a random error of 14.0 ppb (0.8 %) and a systematic error of 4.4 ppb (0.2 %). The natural XCO and XCH4 variations are well captured by the satellite retrievals, which is demonstrated by a high correlation to the reference data (R = 0.97 for XCO and R = 0.91 for XCH4 based on daily averages). We also present selected results from mission start until end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4 emissions from the energy sector.


Author(s):  
A. Predoi-Cross ◽  
K. Esteki ◽  
H. Rozario ◽  
H. Naseri ◽  
S. Latif ◽  
...  

2001 ◽  
Author(s):  
Katsuhisa Takada ◽  
Yoshitaka Maekawa ◽  
Mitsuhiro Iyoda ◽  
Manabu Taniwaki ◽  
Kouki Shimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document