scholarly journals ULIRS, an optimal estimation retrieval scheme for carbon monoxide using IASI spectral radiances: sensitivity analysis, error budget and simulations

2011 ◽  
Vol 4 (2) ◽  
pp. 269-288 ◽  
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
D. P. Moore ◽  
H. Sembhi ◽  
...  

Abstract. This paper presents a new retrieval scheme for tropospheric carbon monoxide (CO), using measured radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. The University of Leicester IASI Retrieval Scheme (ULIRS) is an optimal estimation retrieval scheme, which utilises equidistant pressure levels and a floating pressure grid based on topography. It makes use of explicit digital elevation and emissivity information, and incorporates a correction for solar surface reflection in the daytime with a high resolution solar spectrum. The retrieval scheme has been assessed through a formal error analysis, via the simulation of surface effects and by an application to real IASI data over a region in Southern Africa. The ULIRS enables the retrieval of between 1 and 2 pieces of information about the tropospheric CO vertical profiles, with peaks in the sensitivity at approximately 5 and 12 km. Typical errors for the African region relating to the profiles are found to be ~20% at 5 and 12 km, and on the total columns to range from 18 to 34%. Finally the performance of the ULIRS is shown for a range of simulated geophysical conditions.

2010 ◽  
Vol 3 (4) ◽  
pp. 3747-3802 ◽  
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
D. P. Moore ◽  
H. Sembhi ◽  
...  

Abstract. This paper presents a new retrieval scheme for tropospheric carbon monoxide (CO), using measured radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. The University of Leicester IASI Retrieval Scheme (ULIRS) is an optimal estimation retrieval scheme, which utilises equidistant pressure levels and a floating pressure grid based on topography. It makes use of explicit digital elevation and emissivity information, and incorporates a correction for solar surface reflection in the daytime with a high resolution solar spectrum. The retrieval scheme has been assessed through a formal error analysis, via the simulation of surface effects and by an application to real IASI data over a region in Southern Africa. The ULIRS enables the retrieval of between 1 and 2 pieces of information about the tropospheric CO vertical profiles, with peaks in the sensitivity at approximately 5 and 12 km. Typical errors for the African region relating to the profiles are found to be ~20% at 5 and 12 km, and on the total columns to range from 18 to 34%. Finally the performance of the ULIRS is shown for a range of simulated geophysical conditions.


2021 ◽  
Author(s):  
Michael P. Cartwright ◽  
Jeremy J. Harrison ◽  
David P. Moore

<p>Carbonyl sulfide (OCS) is the most abundant sulfur containing gas in the atmosphere and is an important source of stratospheric aerosol. Furthermore, it has been shown that OCS can be used as a proxy for photosynthesis, which is a powerful tool in quantifying global gross primary production. While considerable improvements have been made in our understanding of the location and magnitude of OCS fluxes over the past few decades, recent studies highlight the need for a new satellite dataset to help reduce the uncertainties in current estimations. The Infrared Atmospheric Sounding Interferometer (IASI) instruments on-board the MetOp satellites offer over 14 years of nadir viewing radiance measurements with excellent spatial coverage. Given that there are currently three IASI instruments in operation, there is the potential for a significantly larger OCS dataset than is currently available elsewhere. Retrievals of OCS from these IASI radiances have been made using an adapted version of the University of Leicester IASI Retrieval Scheme (ULIRS). OCS total column amounts are calculated from profiles retrieved on a 31-layer equidistant pressure grid, using an optimal estimation approach for microwindows in the range 2000 – 2100 cm<sup>-1</sup> wavenumbers. Sensitivity of the measurements peak in the mid-troposphere, between 5 – 10 km.</p><p>The outlook of this work is to produce a long-term OCS satellite observational data set that provides fresh insight to the spatial distribution and trend of atmospheric OCS. Here, we present subsets of data in the form of case studies for different geographic regions and time periods.</p>


2008 ◽  
Vol 8 (1) ◽  
pp. 2129-2141 ◽  
Author(s):  
D. J. Turnbull ◽  
P. W. Schouten

Abstract. Researchers at the University of Southern Queensland have developed a personal UV dosimeter that can quantitatively assess high exposure solar UVA exposures. The chemical polyphenylene oxide has been previously reported on its ability to measure high UVB exposures. This current research has found that polyphenylene oxide, cast in thin film form, is responsive to both the UVA and UVB parts of the solar spectrum. Further to this, the UVB wavelengths were filtered out with the use of mylar. This combined system responded to the UVA wavelengths only and underwent a change in optical absorbance as a result of UVA exposure. Preliminary results indicate that this UVA dosimeter saturates steadily when exposed to sunlight and can measure exposures of more than 20 MJ/m2 of solar UVA radiation with an uncertainty level of no more than ±5%.


2017 ◽  
Vol 10 (7) ◽  
pp. 2687-2702 ◽  
Author(s):  
Georgina M. Miles ◽  
Richard Siddans ◽  
Roy G. Grainger ◽  
Alfred J. Prata ◽  
Bradford Fisher ◽  
...  

Abstract. We present an optimal-estimation (OE) retrieval scheme for stratospheric sulfur dioxide from the High-Resolution Infrared Radiation Sounder 2 (HIRS/2) instruments on the NOAA and MetOp platforms, an infrared radiometer that has been operational since 1979. This algorithm is an improvement upon a previous method based on channel brightness temperature differences, which demonstrated the potential for monitoring volcanic SO2 using HIRS/2. The Prata method is fast but of limited accuracy. This algorithm uses an optimal-estimation retrieval approach yielding increased accuracy for only moderate computational cost. This is principally achieved by fitting the column water vapour and accounting for its interference in the retrieval of SO2. A cloud and aerosol model is used to evaluate the sensitivity of the scheme to the presence of ash and water/ice cloud. This identifies that cloud or ash above 6 km limits the accuracy of the water vapour fit, increasing the error in the SO2 estimate. Cloud top height is also retrieved. The scheme is applied to a case study event, the 1991 eruption of Cerro Hudson in Chile. The total erupted mass of SO2 is estimated to be 2300 kT ± 600 kT. This confirms it as one of the largest events since the 1991 eruption of Pinatubo, and of comparable scale to the Northern Hemisphere eruption of Kasatochi in 2008. This retrieval method yields a minimum mass per unit area detection limit of 3 DU, which is slightly less than that for the Total Ozone Mapping Spectrometer (TOMS), the only other instrument capable of monitoring SO2 from 1979 to 1996. We show an initial comparison to TOMS for part of this eruption, with broadly consistent results. Operating in the infrared (IR), HIRS has the advantage of being able to measure both during the day and at night, and there have frequently been multiple HIRS instruments operated simultaneously for better than daily sampling. If applied to all data from the series of past and future HIRS instruments, this method presents the opportunity to produce a comprehensive and consistent volcanic SO2 time series spanning over 40 years.


2010 ◽  
Vol 3 (1) ◽  
pp. 209-232 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
O. Schneising ◽  
J. Heymann ◽  
H. Bovensmann ◽  
...  

Abstract. An optimal estimation based retrieval scheme for satellite based retrievals of XCO2 (the dry air column averaged mixing ratio of atmospheric CO2) is presented enabling accurate retrievals also in the presence of thin clouds. The proposed method is designed to analyze near-infrared nadir measurements of the SCIAMACHY instrument in the CO2 absorption band at 1580 nm and in the O2-A absorption band at around 760 nm. The algorithm accounts for scattering in an optically thin cirrus cloud layer and at aerosols of a default profile. The scattering information is mainly obtained from the O2-A band and a merged fit windows approach enables the transfer of information between the O2-A and the CO2 band. Via the optimal estimation technique, the algorithm is able to account for a priori information to further constrain the inversion. Test scenarios of simulated SCIAMACHY sun-normalized radiance measurements are analyzed in order to specify the quality of the proposed method. In contrast to existing algorithms for SCIAMACHY retrievals, the systematic errors due to cirrus clouds with optical thicknesses up to 1.0 are reduced to values below 4 ppm for most of the analyzed scenarios. This shows that the proposed method has the potential to reduce uncertainties of SCIAMACHY retrieved XCO2 making this data product potentially useful for surface flux inverse modeling.


In a recent survey article, Goldberg (1954) gives a list of 127 molecular bands which have been observed in the absorption spectrum of the earth’s atmosphere by studying the solar spectrum between 0.3 and 24 μ . Among these, 35 bands are attributed to the following molecules: O 3 , N 2 O, CH 4 , HDO, CO. The main purpose of this contribution to the Discussion was to show several of these bands as they appear on solar spectrograms taken at the International Scientific Station, Jungfraujoch (Switzerland), in collaboration with Dr L. Neven of the Royal Observatory, Uccle (Belgium). The altitude of this station is 3580 m. It has been pointed out in earlier notes (Migeotte & Neven 1952 a, b ) that these data have been obtained, under high resolving power, by using the prism-grating infra-red spectrograph of the University of Liege (Migeotte 1945). Between 9.33 and 10.08 μ , our spectrograms show 320 lines which are mainly due to the fine structure of the 9.6 μ band of ozone (Migeotte, Neven & Vigroux 1952). Part of our data has been analyzed recently by Kaplan (1955), of the Institute for Advanced Study in Princeton (N. J.), U. S. A. A good fit for low J has been obtained with the following upper-state parameters: vibrational frequency v 3 1042.16 cm -1 ; rotational constants: A = 3.502 1 cm -1 , B = 0.440 1 cm -1 , C = 0.388 3 Cm -1 ; δ = 0.0166 34 .


2009 ◽  
Vol 2 (2) ◽  
pp. 679-701 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2013 ◽  
Vol 10 ◽  
pp. 15-26 ◽  
Author(s):  
Jiří Šíma

The paper illustrates the development of digital aerial survey and digital elevation models covering the entire area of the Czech Republic at the beginning of 21st century. It also presents some results of systematic investigation of their quality parameters reached by the author in cooperation with Department of Geomatics at the Faculty of Applied Sciences of the University of Western Bohemia in Pilsen and the Land Survey Office.


Author(s):  
T. Allison ◽  
D. Fraser ◽  
E. Stefanakis

This paper describes the requirements for a weighted visibility classification of seats in the University of New Brunswick’s (UNB) Aitken University Centre (AUC). Price levels for seats are typically set for sections of seats based on promoter preferences. In a visibility classification, the digital elevation model (DEM) is created for the AUC and includes possible view obstructions. The view obstructions taken into account for this design were the penalty boxes, player bencher, and the rink boards. There were no other major obstructions in the AUC. The visibility calculations compute the number of visible pixels of the rink surface for each seat. It is expected that seats with a higher number of visible pixels will also have better visibility. The number of viewable pixels is weighted by distance to the center of ice surface to account for the preference of seats that are closer to the rink surface. This paper outlines the collection of data, weighted visibility classification method, and the development of information products. There are two main objectives of this weighted visibility classification and seating plan: (a) to demonstrate that a weighted visibility classification is a viable method to classify seats, and that this methodology could be used to set price levels for a venue and (b) create online web applications to suit the functionality for users and venue administrators. The user web application allows the user to pan, zoom and perform limited searches in the interactive map.


2019 ◽  
Author(s):  
Oliver Schneising ◽  
Michael Buchwitz ◽  
Maximilian Reuter ◽  
Heinrich Bovensmann ◽  
John P. Burrows ◽  
...  

Abstract. Carbon monoxide (CO) is an important atmospheric constituent affecting air quality and methane (CH4) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadir viewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR) combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with unprecedented level of detail on a global scale introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4 are simultaneously retrieved from TROPOMI's radiance measurements in the 2.3 μm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified DOAS (WFM-DOAS). We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine learning-based quality filter and a shallow learning calibration procedure applied in the post-processing of the XCH4 data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier Transform Spectrometer (FTS) measurements providing realistic error estimates of the satellite data: The XCO data set is characterised by a random error of 5.1 ppb (5.7 %) and a systematic error of 1.9 ppb (2.1 %); the XCH4 data set exhibits a random error of 14.0 ppb (0.8 %) and a systematic error of 4.4 ppb (0.2 %). The natural XCO and XCH4 variations are well captured by the satellite retrievals, which is demonstrated by a high correlation to the reference data (R = 0.97 for XCO and R = 0.91 for XCH4 based on daily averages). We also present selected results from mission start until end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4 emissions from the energy sector.


Sign in / Sign up

Export Citation Format

Share Document