scholarly journals Decoherence in two-dimensional quantum random walks with traps

2009 ◽  
Vol 80 (2) ◽  
Author(s):  
Meltem Gönülol ◽  
Ekrem Aydiner ◽  
Özgür E. Müstecaplıoğlu
2019 ◽  
Vol 123 (15) ◽  
Author(s):  
Hamidreza Chalabi ◽  
Sabyasachi Barik ◽  
Sunil Mittal ◽  
Thomas E. Murphy ◽  
Mohammad Hafezi ◽  
...  

1993 ◽  
Vol 08 (25) ◽  
pp. 4521-4545 ◽  
Author(s):  
S. MAJID

Classical random walks and Markov processes are easily described by Hopf algebras. It is also known that groups and Hopf algebras (quantum groups) lead to classical and quantum diffusions. We study here the more primitive notion of a quantum random walk associated with a general Hopf algebra and show that it has a simple physical interpretation in quantum mechanics. This is by means of a representation theorem motivated from the theory of Kac algebras: If H is any Hopf algebra, it may be realized in Lin(H) in such a way that Δh=W(h⊗1)W−1 for an operator W. This W is interpreted as the time evolution operator for the system at time t coupled quantum-mechanically to the system at time t+δ. Finally, for every Hopf algebra there is a dual one, leading us to a duality operation for quantum random walks and quantum diffusions and a notion of the coentropy of an observable. The dual system has its time reversed with respect to the original system, leading us to a novel kind of CTP theorem.


2002 ◽  
Vol 73 (3) ◽  
pp. 301-334 ◽  
Author(s):  
Marc Lindlbauer ◽  
Michael Voit

AbstractThe spherical functions of triangle buildings can be described in terms of certain two-dimensional orthogonal polynomials on Steiner's hypocycloid which are closely related to Hall-Littlewood polynomials. They lead to a one-parameter family of two-dimensional polynimial hypergroups. In this paper we investigate isotropic random walks on the vertex sets of triangle buildings in terms of their projections to these hypergroups. We present strong laws of large numbers, a central limit theorem, and a local limit theorem; all these results are well-known for homogeneous trees. Proofs are based on moment functions on hypergroups and on explicit expansions of the hypergroup characters in terms of certain two-dimensional Tchebychev polynimials.


Sign in / Sign up

Export Citation Format

Share Document