scholarly journals Synthetic Gauge Field for Two-Dimensional Time-Multiplexed Quantum Random Walks

2019 ◽  
Vol 123 (15) ◽  
Author(s):  
Hamidreza Chalabi ◽  
Sabyasachi Barik ◽  
Sunil Mittal ◽  
Thomas E. Murphy ◽  
Mohammad Hafezi ◽  
...  
2009 ◽  
Vol 80 (2) ◽  
Author(s):  
Meltem Gönülol ◽  
Ekrem Aydiner ◽  
Özgür E. Müstecaplıoğlu

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


1993 ◽  
Vol 08 (25) ◽  
pp. 4521-4545 ◽  
Author(s):  
S. MAJID

Classical random walks and Markov processes are easily described by Hopf algebras. It is also known that groups and Hopf algebras (quantum groups) lead to classical and quantum diffusions. We study here the more primitive notion of a quantum random walk associated with a general Hopf algebra and show that it has a simple physical interpretation in quantum mechanics. This is by means of a representation theorem motivated from the theory of Kac algebras: If H is any Hopf algebra, it may be realized in Lin(H) in such a way that Δh=W(h⊗1)W−1 for an operator W. This W is interpreted as the time evolution operator for the system at time t coupled quantum-mechanically to the system at time t+δ. Finally, for every Hopf algebra there is a dual one, leading us to a duality operation for quantum random walks and quantum diffusions and a notion of the coentropy of an observable. The dual system has its time reversed with respect to the original system, leading us to a novel kind of CTP theorem.


Sign in / Sign up

Export Citation Format

Share Document