scholarly journals Bounds on universal quantum computation with perturbed two-dimensional cluster states

2013 ◽  
Vol 87 (6) ◽  
Author(s):  
Román Orús ◽  
Henning Kalis ◽  
Marcel Bornemann ◽  
Kai Phillip Schmidt
Science ◽  
2019 ◽  
Vol 366 (6463) ◽  
pp. 369-372 ◽  
Author(s):  
Mikkel V. Larsen ◽  
Xueshi Guo ◽  
Casper R. Breum ◽  
Jonas S. Neergaard-Nielsen ◽  
Ulrik L. Andersen

Measurement-based quantum computation offers exponential computational speed-up through simple measurements on a large entangled cluster state. We propose and demonstrate a scalable scheme for the generation of photonic cluster states suitable for universal measurement-based quantum computation. We exploit temporal multiplexing of squeezed light modes, delay loops, and beam-splitter transformations to deterministically generate a cylindrical cluster state with a two-dimensional (2D) topological structure as required for universal quantum information processing. The generated state consists of more than 30,000 entangled modes arranged in a cylindrical lattice with 24 modes on the circumference, defining the input register, and a length of 1250 modes, defining the computation depth. Our demonstrated source of two-dimensional cluster states can be combined with quantum error correction to enable fault-tolerant quantum computation.


2006 ◽  
Vol 97 (11) ◽  
Author(s):  
Nicolas C. Menicucci ◽  
Peter van Loock ◽  
Mile Gu ◽  
Christian Weedbrook ◽  
Timothy C. Ralph ◽  
...  

2011 ◽  
Vol 84 (2) ◽  
Author(s):  
Daniel J. Brod ◽  
Ernesto F. Galvão

2008 ◽  
Vol 8 (10) ◽  
pp. 977-985
Author(s):  
Z.-Y. Xu ◽  
M. Feng ◽  
W.-M. Zhang

We investigate the possibility to have electron-pairs in decoherence-free subspace (DFS), by means of the quantum-dot cellular automata (QCA) and single-spin rotations, to deterministically carry out a universal quantum computation with high-fidelity. We show that our QCA device with electrons tunneling in two dimensions is very suitable for DFS encoding, and argue that our design favors a scalable quantum computation robust to collective dephasing errors.


Nature ◽  
2017 ◽  
Vol 549 (7671) ◽  
pp. 172-179 ◽  
Author(s):  
Earl T. Campbell ◽  
Barbara M. Terhal ◽  
Christophe Vuillot

Sign in / Sign up

Export Citation Format

Share Document