scholarly journals Dissipation-relaxation dynamics of a spin- 12 particle with a Rashba-type spin-orbit coupling in an ohmic heat bath

2021 ◽  
Vol 104 (14) ◽  
Author(s):  
Tomohiro Hata ◽  
Eiji Nakano ◽  
Kei Iida ◽  
Hiroyuki Tajima ◽  
Junichi Takahashi
2018 ◽  
Vol 4 (4) ◽  
pp. 56
Author(s):  
Dipali Sadhukhan ◽  
Prithwi Ghosh ◽  
Carlos Gómez-García ◽  
Mathieu Rouzieres

An octahedral Co(II) complex with N′-(2-hydroxybenzylidene)acetohydrazide Schiff base ligand [HL] forms a 3D supramolecular assembly supported by non-coordinating ClO4− ions and H2O molecules. Individual spin centres are non-interacting and give rise to significant spin-orbit coupling, resulting in field induced slow magnetisation relaxation; which is characteristic of Single Ion Magnet (SIM) behaviour.


2019 ◽  
Vol 205 ◽  
pp. 05018
Author(s):  
Carbery William P. ◽  
Turner Daniel B.

Two-dimensional electronic spectroscopy reveals divergent, spin-orbit coupling mediated, electronic relaxation dynamics in iridium(IV) hexa-bromide ([IrB6]2-) and the ruthenium(II)-based DSSC dye N719.


2019 ◽  
Vol 116 (10) ◽  
pp. 4006-4011 ◽  
Author(s):  
H.-H. Kung ◽  
A. P. Goyal ◽  
D. L. Maslov ◽  
X. Wang ◽  
A. Lee ◽  
...  

The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI,Bi2Se3. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.


2019 ◽  
Vol 31 (18) ◽  
pp. 185802 ◽  
Author(s):  
Sayantika Bhowal ◽  
Shreemoyee Ganguly ◽  
Indra Dasgupta

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


Sign in / Sign up

Export Citation Format

Share Document