Random-temperature Ginzburg-Landau model: Spin-glass or ferromagnet?

1980 ◽  
Vol 22 (11) ◽  
pp. 5553-5556 ◽  
Author(s):  
David Sherrington



1978 ◽  
Vol 40 (9) ◽  
pp. 589-593 ◽  
Author(s):  
Shang-keng Ma ◽  
Joseph Rudnick


2011 ◽  
Vol 44 (4) ◽  
pp. 042003 ◽  
Author(s):  
Florent Krzakala ◽  
Federico Ricci-Tersenghi ◽  
David Sherrington ◽  
Lenka Zdeborová


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander A. Penin ◽  
Quinten Weller

Abstract We elaborate a theory of giant vortices [1] based on an asymptotic expansion in inverse powers of their winding number n. The theory is applied to the analysis of vortex solutions in the abelian Higgs (Ginzburg-Landau) model. Specific properties of the giant vortices for charged and neutral scalar fields as well as different integrable limits of the scalar self-coupling are discussed. Asymptotic results and the finite-n corrections to the vortex solutions are derived in analytic form and the convergence region of the expansion is determined.



1978 ◽  
Vol 17 (1) ◽  
pp. 455-470 ◽  
Author(s):  
Kyozi Kawasaki ◽  
Mehmet C. Yalabik ◽  
J. D. Gunton




1994 ◽  
Vol 74 (3-4) ◽  
pp. 705-742 ◽  
Author(s):  
Horng-Tzer Yau


2001 ◽  
Vol 63 (3) ◽  
Author(s):  
Javier Buceta ◽  
Juan M. R. Parrondo ◽  
F. Javier de la Rubia




2017 ◽  
Vol 110 ◽  
pp. 49-56 ◽  
Author(s):  
B. Nawaz ◽  
K. Ali ◽  
S.T.R. Rizvi ◽  
M. Younis


Sign in / Sign up

Export Citation Format

Share Document