scholarly journals Quantum transport of vortices in a weakly dissipative ring threaded by an Aharonov-Casher flux: A tight-binding model

1997 ◽  
Vol 56 (18) ◽  
pp. R11411-R11414 ◽  
Author(s):  
Jian-Xin Zhu ◽  
Z. D. Wang
2007 ◽  
Vol 06 (06) ◽  
pp. 415-422 ◽  
Author(s):  
SANTANU K. MAITI

The electronic transport characteristics through a single phenalenyl molecule sandwiched between two metallic electrodes are investigated by using Green's function technique. A parametric approach, based on the tight-binding model, is used to study the transport characteristics through such molecular bridge system. The electronic transport properties are significantly influenced by (a) the molecule-to-electrodes interface structure and (b) the molecule-to-electrodes coupling strength.


2004 ◽  
Vol 16 (39) ◽  
pp. 6851-6866 ◽  
Author(s):  
D A Areshkin ◽  
O A Shenderova ◽  
J D Schall ◽  
S P Adiga ◽  
D W Brenner

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 253
Author(s):  
Yosang Jeong ◽  
Hoon Ryu

The non-equilibrium Green’s function (NEGF) is being utilized in the field of nanoscience to predict transport behaviors of electronic devices. This work explores how much performance improvement can be driven for quantum transport simulations with the aid of manycore computing, where the core numerical operation involves a recursive process of matrix multiplication. Major techniques adopted for performance enhancement are data restructuring, matrix tiling, thread scheduling, and offload computing, and we present technical details on how they are applied to optimize the performance of simulations in computing hardware, including Intel Xeon Phi Knights Landing (KNL) systems and NVIDIA general purpose graphic processing unit (GPU) devices. With a target structure of a silicon nanowire that consists of 100,000 atoms and is described with an atomistic tight-binding model, the effects of optimization techniques on the performance of simulations are rigorously tested in a KNL node equipped with two Quadro GV100 GPU devices, and we observe that computation is accelerated by a factor of up to ∼20 against the unoptimized case. The feasibility of handling large-scale workloads in a huge computing environment is also examined with nanowire simulations in a wide energy range, where good scalability is procured up to 2048 KNL nodes.


AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015127
Author(s):  
Qiuyuan Chen ◽  
Jiawei Chang ◽  
Lin Ma ◽  
Chenghan Li ◽  
Liangfei Duan ◽  
...  

2021 ◽  
Vol 154 (16) ◽  
pp. 164115
Author(s):  
Rebecca K. Lindsey ◽  
Sorin Bastea ◽  
Nir Goldman ◽  
Laurence E. Fried

2005 ◽  
Vol 31 (8) ◽  
pp. 585-595 ◽  
Author(s):  
D. A. Areshkin ◽  
O. A. Shenderova ◽  
J. D. Schall ◽  
D. W. Brenner

Sign in / Sign up

Export Citation Format

Share Document