scholarly journals Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systemsβ-HgS, HgSe, and HgTe

2002 ◽  
Vol 66 (3) ◽  
Author(s):  
A. Delin ◽  
T. Klüner
2019 ◽  
Vol 28 (10) ◽  
pp. 1950078
Author(s):  
Y. El Bassem ◽  
M. Oulne

In this work, the ground state properties of the platinum isotopic chain, [Formula: see text]Pt are studied within the covariant density functional theory. The calculations are carried out for a large number of even–even Pt isotopes by using the density-dependent point-coupling and the density-dependent meson-exchange effective interactions. All ground state properties such as the binding energy, separation energy, two-neutron shell gap, root mean square (rms)-radii for neutrons and protons and quadrupole deformation are discussed and compared with available experimental data, and with the predictions of some nuclear models such as the Relativistic Mean Field (RMF) model with NL3 functional and the Hartree–Fock–Bogoliubov (HFB) method with SLy4 Skyrme force. The shape phase transition for Pt isotopic chain is also studied. Its corresponding total energy curves as well as the potential energy surfaces confirm the transition from prolate to oblate shapes at [Formula: see text]Pt contrary to some studies predictions and in agreement with others. Overall, a good agreement is found between the calculated and experimental results wherever available.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Mikaeilzadeh ◽  
A. Tavana ◽  
F. Khoeini

AbstractIn this works, we study the electronic structure and magnetic properties of the Pr-Ni-Bi half-Heusler systems based on density functional theory. We use the σ GGA + U scheme to consider the effects of on-site electron-electron interactions. Results show that in contrast to the rough estimation of the total magnetic moment of the unit cell, based on the Slater-Pauling behavior in the half-Heusler systems, this system has an antiferromagnetic ground state because of the localized Pr-f electrons. By increasing the magnitude of the effective U parameter, band-inversion occurs in the band structure of this system, which shows the possibility of topological state occurrence.


Sign in / Sign up

Export Citation Format

Share Document