scholarly journals Occupation probability of harmonic-oscillator quanta for microscopic cluster-model wave functions

1996 ◽  
Vol 54 (4) ◽  
pp. 2073-2076 ◽  
Author(s):  
Y. Suzuki ◽  
K. Arai ◽  
Y. Ogawa ◽  
K. Varga

1994 ◽  
Vol 100 (3) ◽  
pp. 1988-1994 ◽  
Author(s):  
J. M. Ricart ◽  
A. Clotet ◽  
F. Illas ◽  
J. Rubio




1960 ◽  
Vol 14 (3) ◽  
pp. 349-375 ◽  
Author(s):  
Th. Kanellopoulos ◽  
K. Wildermuth


1965 ◽  
Vol 85 (4) ◽  
pp. 659-671 ◽  
Author(s):  
Daphne F Jackson ◽  
L R B Elton


1997 ◽  
Vol 101 (50) ◽  
pp. 9732-9737 ◽  
Author(s):  
F. Illas ◽  
J. M. Ricart ◽  
A. Clotet


2019 ◽  
Vol 26 ◽  
pp. 9
Author(s):  
I. E. Assimakis ◽  
Dennis Bonatsos ◽  
Andriana Martinou ◽  
S. Sarantopoulou ◽  
S. Peroulis ◽  
...  

The increasing deformation in atomic nuclei leads to the change of the classical magic numbers (2,8,20,28,50,82…) which dictate the arrangement of nucleons in complete shells. The magic numbers of the three-dimensional harmonic oscillator (2,8,20,40,70,…) emerge at deformations around ε=0.6. At lower deformations the two sets of magic numbers antagonize, leading to shape coexistence. A quantitative investigation is performed using the usual Nilsson model wave functions and the recently introduced proxy–SU(3) scheme.



1963 ◽  
Vol 46 ◽  
pp. 303-320 ◽  
Author(s):  
J.M. Hansteen ◽  
I. Kanestrøm


1970 ◽  
Vol 142 (1) ◽  
pp. 87-99
Author(s):  
M. El-Nadi ◽  
O. Zohni


1980 ◽  
Vol 48 (4) ◽  
pp. 307-307 ◽  
Author(s):  
Marshall Bowen ◽  
Joseph Coster




Sign in / Sign up

Export Citation Format

Share Document