reaction cross
Recently Published Documents


TOTAL DOCUMENTS

1605
(FIVE YEARS 267)

H-INDEX

64
(FIVE YEARS 5)

2022 ◽  
Author(s):  
RATANKUMAR SINGH ◽  
N.L. Singh ◽  
Rakesh Chauhan ◽  
Mayur Mehta ◽  
Saraswatula suryanarayan ◽  
...  

Abstract The cross sections of the 121Sb(n,2n) 120Sbm and 123Sb(n,2n) 122Sb reactions were measured at 12.50, 15.79 and 18.87 MeV neutron energies relative to the standard 27Al(n,α) 24Na monitor reaction using neutron activation and offline γ-ray spectrometry technique. Irradiations of the samples were performed at the BARC-TIFR Pelletron Linac Facility, Mumbai, India. The quasi-monoenergetic neutron was generated via the 7Li(p,n) reaction. Statistical model calculations were performed by nuclear reaction codes TALYS (ver. 1.9) and EMPIRE (ver. 3.2.2) using various input parameters and nuclear level density models. The cross sections of the ground and the isomeric state as well as the isomeric cross section ratio were studied theoretically from reaction threshold to 26 MeV energies. The effect of pre-equilibrium emission is also discussed in detail using different theoretical models. The present measured cross section were discussed and compared with reported experimental data and evaluation data of the JEFF-3.3, ENDF/B-VIII.0, JENDL/AD-2017 and TENDL-2019 libraries. A detailed analysis of the uncertainties in the measured cross section data was performed using the covariance analysis method. Furthermore, a systematic study of the (n,2n) reaction cross section for 121Sb and 123Sb isotopes were also performed within 14-15 MeV neutron energies using various systematic formulae. This work helps to overcome discrepancies in Sb data and illustrate a better understanding of pre-equilibrium emission in (n,2n) reaction channel.


2022 ◽  
Author(s):  
X. X. Li ◽  
L. X. Liu ◽  
W. Jiang ◽  
J. Ren ◽  
H. W. Wang ◽  
...  

Abstract Silver indium cadmium (Ag-In-Cd) control rod is widely used in pressurized water reactor nuclear power plants, and which is continuously consumed in a high neutron flux environment. The mass ratio of 107Ag in Ag-In-Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the 107Ag is required. Meanwhile, 107Ag is also an important weak r nuclei. Thus, the cross sections for neutron induced interactions with 107Ag are very important both in nuclear energy and nuclear astrophysics. The (n, γ) cross section of 107Ag has been measured in the energy range of 1-60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of 107Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at https://www.scidb.cn/s/aaUJbu.


2022 ◽  
Vol 190 ◽  
pp. 109789
Author(s):  
Jianfeng Liang ◽  
Feng Xie ◽  
Jie Bao ◽  
Xuesong Li ◽  
Quanlin Shi ◽  
...  

2022 ◽  
pp. 105132
Author(s):  
Shingo Tagami ◽  
Tomotsugu Wakasa ◽  
Maya Takechi ◽  
Jun Matsui ◽  
Masanobu Yahiro

2022 ◽  
Vol 58 (1) ◽  
Author(s):  
M. Avrigeanu ◽  
D. Rochman ◽  
A. J. Koning ◽  
U. Fischer ◽  
D. Leichtle ◽  
...  

AbstractFollowing the EUROfusion PPPT-programme action for an advanced modeling approach of deuteron-induced reaction cross sections, as well as specific data evaluations in addition of the TENDL files, an assessment of the details and corresponding outcome for the latter option of TALYS for the breakup model has been carried out. The breakup enhancement obtained in the meantime within computer code TALYS, by using the evaluated nucleon-induced reaction data of TENDL-2019, is particularly concerned. Discussion of the corresponding results, for deuteron-induced reactions on $$^{58}$$ 58 Ni, $$^{96}$$ 96 Zr, and $$^{231}$$ 231 Pa target nuclei up to 200 MeV incident energy, includes limitations still existing with reference to the direct-reaction account.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 25
Author(s):  
Sema Küçüksucu ◽  
Mustafa Yiğit ◽  
Nils Paar

The (n,α) reaction contributes in many processes of energy generation and nucleosynthesis in stellar environment. Since experimental data are available for a limited number of nuclei and in restricted energy ranges, at present only theoretical studies can provide predictions for all astrophysically relevant (n,α) reaction cross sections. The purpose of this work is to study (n,α) reaction cross sections for a set of nuclei contributing in the weak s-process nucleosynthesis. Theory framework is based on the statistical Hauser-Feshbach model implemented in TALYS code with nuclear masses and level densities based on Skyrme energy density functional. In addition to the analysis of the properties of calculated (n,α) cross sections, the Maxwellian averaged cross sections are described and analyzed for the range of temperatures in stellar environment. Model calculations determined astrophysically relevant energy windows in which (n,α) reactions occur in stars. In order to reduce the uncertainties in modeling (n,α) reaction cross sections for the s-process, novel experimental studies are called for. Presented results on the effective energy windows for (n,α) reaction in weak s-process provide a guidance for the priority energy ranges in the future experimental studies.


2022 ◽  
Author(s):  
Kohtaro Osakada ◽  
Yasushi Nishihara

The Suzuki–Miyaura reaction (cross-coupling reaction of boronic acids with organic halides catalysed by Pd complexes) has been recognised as the useful synthetic organic reaction that forms a C(sp2)–C(sp2) bond. The...


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Chemseddine Ananna ◽  
Francesco Barile ◽  
Axel Boeltzig ◽  
Carlo Giulio Bruno ◽  
Francesca Cavanna ◽  
...  

Nuclear reaction cross sections are essential ingredients to predict the evolution of AGB stars and understand their impact on the chemical evolution of our Galaxy. Unfortunately, the cross sections of the reactions involved are often very small and challenging to measure in laboratories on Earth. In this context, major steps forward were made with the advent of underground nuclear astrophysics, pioneered by the Laboratory for Underground Nuclear Astrophysics (LUNA). The present paper reviews the contribution of LUNA to our understanding of the evolution of AGB stars and related nucleosynthesis.


2021 ◽  
Vol 11 (24) ◽  
pp. 11986
Author(s):  
Valerio Ricciardi ◽  
Pavel Bláha ◽  
Raffaele Buompane ◽  
Giuseppina Crescente ◽  
Giacomo Cuttone ◽  
...  

Protontherapy (PT) is a fast-growing cancer therapy modality thanks to much-improved normal tissue sparing granted by the charged particles’ inverted dose-depth profile. Protons, however, exhibit a low biological effectiveness at clinically relevant energies. To enhance PT efficacy and counteract cancer radioresistance, Proton–Boron Capture Therapy (PBCT) was recently proposed. PBCT exploits the highly DNA-damaging α-particles generated by the p + 11B→3α (pB) nuclear reaction, whose cross-section peaks for proton energies of 675 keV. Although a significant enhancement of proton biological effectiveness by PBCT has been demonstrated for high-energy proton beams, validation of the PBCT rationale using monochromatic proton beams having energy close to the reaction cross-section maximum is still lacking. To this end, we implemented a novel setup for radiobiology experiments at a 3-MV tandem accelerator; using a scattering chamber equipped with an Au foil scatterer for beam diffusion on the biological sample, uniformity in energy and fluence with uncertainties of 2% and 5%, respectively, was achieved. Human cancer cells were irradiated at this beamline for the first time with 685-keV protons. The measured enhancement in cancer cell killing due to the 11B carrier BSH was the highest among those thus far observed, thereby corroborating the mechanistic bases of PBCT.


Author(s):  
shisheng Zhang ◽  
Shiyi Zhong ◽  
Bo Shao ◽  
Michael Smith

Abstract Using a Glauber model with our relativistic fully microscopic structure model input, we give a full description of the halo nature of $^{31}$Ne that includes a self-consistent use of pairing and continuum contributions that makes predictions consistent with reaction cross section measurements. Our predictions of total reaction and one-neutron removal cross sections of $^{31}$Ne on a Carbon target were significantly enhanced compared with those of neighboring Neon isotopes, agreeing with measurements at 240 MeV/nucleon and consistent with a single neutron halo. Furthermore, our calculations of the inclusive longitudinal momentum distribution of the $^{30}$Ne and valence neutron residues from the $^{31}$Ne breakup reaction indicate a dilute density distribution in coordinate space, another halo signature.


Sign in / Sign up

Export Citation Format

Share Document