scholarly journals Semiclassical limit of new path integral formulation from reduced phase space loop quantum gravity

2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Muxin Han ◽  
Hongguang Liu
2018 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Ola A. Jarabah

Path integral formulation based on the canonical method is discussed. The Hamilton Jacobi function for regular Lagrangian is obtained using separation of variables method. This function is used to quantize regular systems using path integral method. The path integral is obtained as integration over the canonical phase space coordinates. One illustrative example is considered to demonstrate the application of our formalism.


2015 ◽  
Vol 24 (10) ◽  
pp. 1550070
Author(s):  
Eckehard W. Mielke

The quantization of a curvature-squared model of gravity, in the affine form proposed by Yang, is reconsidered in the path integral formulation. Due to its inherent Weyl invariance, sharing this with internal Yang–Mills fields, it or some of its topological generalizations are still a possible route to quantum gravity. Instanton type solutions with double duality properties exhibit a "vacuum degeneracy", i.e. a bifurcation into distinct classical Einsteinian backgrounds. For linearized fields, this conclusively induces a mass gap in the graviton spectrum, a feature which is an open problem in the quantization of internal Yang–Mills fields.


2001 ◽  
Vol 115 (10) ◽  
pp. 4484-4495 ◽  
Author(s):  
Nicholas V. Blinov ◽  
Pierre-Nicholas Roy ◽  
Gregory A. Voth

Sign in / Sign up

Export Citation Format

Share Document