path integral formulation
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Marcos Mariño

Quantum mechanics is one of the most successful theories in science, and is relevant to nearly all modern topics of scientific research. This textbook moves beyond the introductory and intermediate principles of quantum mechanics frequently covered in undergraduate and graduate courses, presenting in-depth coverage of many more exciting and advanced topics. The author provides a clearly structured text for advanced students, graduates and researchers looking to deepen their knowledge of theoretical quantum mechanics. The book opens with a brief introduction covering key concepts and mathematical tools, followed by a detailed description of the Wentzel–Kramers–Brillouin (WKB) method. Two alternative formulations of quantum mechanics are then presented: Wigner's phase space formulation and Feynman's path integral formulation. The text concludes with a chapter examining metastable states and resonances. Step-by-step derivations, worked examples and physical applications are included throughout.


Author(s):  
Serhiy Yanchuk ◽  
Antonio C. Roque ◽  
Elbert E. N. Macau ◽  
Jürgen Kurths

AbstractThis special issue presents a series of 33 contributions in the area of dynamical networks and their applications. Part of the contributions is devoted to theoretical and methodological aspects of dynamical networks, such as collective dynamics of excitable systems, spreading processes, coarsening, synchronization, delayed interactions, and others. A particular focus is placed on applications to neuroscience and Earth science, especially functional climate networks. Among the highlights, various methods for dealing with noise and stochastic processes in neuroscience are presented. A method for constructing weighted networks with arbitrary topologies from a single dynamical node with delayed feedback is introduced. Also, a generalization of the concept of geodesic distances, a path-integral formulation of network-based measures is developed, which provides fundamental insights into the dynamics of disease transmission. The contributions from the Earth science application field substantiate predictive power of climate networks to study challenging Earth processes and phenomena.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Kevin Nguyen ◽  
Jakob Salzer

Abstract Infrared divergences in perturbative gravitational scattering amplitudes have been recently argued to be governed by the two-point function of the supertranslation Goldstone mode on the celestial sphere. We show that the form of this celestial two-point function simply derives from an effective action that also controls infrared divergences in the symplectic structure of General Relativity with asymptotically flat boundary conditions. This effective action finds its natural place in a path integral formulation of a celestial conformal field theory, as we illustrate by re-deriving the infrared soft factors in terms of celestial correlators. Our analysis relies on a well-posed action principle close to spatial infinity introduced by Compère and Dehouck.


Author(s):  
Flavio Iannelli ◽  
Igor M. Sokolov

AbstractWe introduce a path-integral formulation of network-based measures that generalize the concept of geodesic distance and that provides fundamental insights into the dynamics of disease transmission as well as an efficient numerical estimation of the infection arrival time.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Naohisa Sueishi ◽  
Syo Kamata ◽  
Tatsuhiro Misumi ◽  
Mithat Ünsal

Abstract There are two well-known approaches to studying nonperturbative aspects of quantum mechanical systems: saddle point analysis of the partition functions in Euclidean path integral formulation and the exact-WKB analysis based on the wave functions in the Schrödinger equation. In this work, based on the quantization conditions obtained from the exact-WKB method, we determine the relations between the two formalism and in particular show how the two Stokes phenomena are connected to each other: the Stokes phenomenon leading to the ambiguous contribution of different sectors of the path integral formulation corresponds to the change of the “topology” of the Stoke curves in the exact-WKB analysis. We also clarify the equivalence of different quantization conditions including Bohr-Sommerfeld, path integral and Gutzwiller’s ones. In particular, by reorganizing the exact quantization condition, we improve Gutzwiller’s analysis in a crucial way by bion contributions (incorporating complex periodic paths) and turn it into an exact result. Furthermore, we argue the novel meaning of quasi-moduli integral and provide a relation between the Maslov index and the intersection number of Lefschetz thimbles.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mario Herrero-Valea ◽  
Raquel Santos-Garcia

Abstract Unimodular Gravity is normally assumed to be equivalent to General Relativity for all matters but the character of the Cosmological Constant. Here we discuss this equivalence in the presence of a non-minimally coupled scalar field. We show that when we consider gravitation to be dynamical in a QFT sense, quantum corrections can distinguish both theories if the non-minimal coupling is non-vanishing. In order to show this, we construct a path integral formulation of Unimodular Gravity, fixing the complicated gauge invariance of the theory and computing all one-loop divergences. We find a combination of the couplings in the Lagrangian to which we can assign a physical meaning. It tells whether quantum gravitational phenomena can be ignored or not at a given energy scale. Its renormalization group flow differs depending on if it is computed in General Relativity or Unimodular Gravity.


Sign in / Sign up

Export Citation Format

Share Document