scholarly journals Dark matter, muon anomalous magnetic moment, and the XENON1T excess

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Debajyoti Choudhury ◽  
Suvam Maharana ◽  
Vandana Sahdev ◽  
Divya Sachdeva
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Debasish Borah ◽  
Lopamudra Mukherjee ◽  
Soumitra Nandi

Abstract We study a generic leptophilic U(1)X extension of the standard model with a light gauge boson. The U(1)X charge assignments for the leptons are guided by lepton universality violating (LUV) observables in semileptonic b → sℓℓ decays, muon anomalous magnetic moment and the origin of leptonic masses and mixing. Anomaly cancellation conditions require the addition of new chiral fermions in the model, one of which acts as a dark matter (DM) candidate when it is stabilised by an additional $$ {\mathcal{Z}}_2 $$ Z 2 symmetry. From our analysis, we show two different possible models with similar particle content that lead to quite contrasting neutrino mass origin and other phenomenology. The proposed models also have the potential to address the anomalous results in b → cℓνℓ decays like R(D), R(D∗), electron anomalous magnetic moment and the very recent KOTO anomaly in the kaon sector. We also discuss different possible collider signatures of our models which can be tested in future.


2018 ◽  
Vol 33 (04) ◽  
pp. 1850032 ◽  
Author(s):  
M. Adeel Ajaib

We explore the sparticle spectroscopy of the supersymmetric SU(5) model with nonuniversal gaugino masses in light of latest experimental searches. We assume that the gaugino mass parameters are independent at the GUT scale. We find that the observed deviation in the anomalous magnetic moment of the muon can be explained in this model. The parameter space that explains this deviation predicts a heavy colored sparticle spectrum whereas the sleptons can be light. We also find a notable region of the parameter space that yields the desired relic abundance for dark matter. In addition, we analyze the model in light of latest limits from direct detection experiments and find that the parameter space corresponding to the observed deviation in the muon anomalous magnetic moment can be probed at some of the future direct detection experiments.


Sign in / Sign up

Export Citation Format

Share Document