scholarly journals Low scale U(1)X gauge symmetry as an origin of dark matter, neutrino mass and flavour anomalies

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Debasish Borah ◽  
Lopamudra Mukherjee ◽  
Soumitra Nandi

Abstract We study a generic leptophilic U(1)X extension of the standard model with a light gauge boson. The U(1)X charge assignments for the leptons are guided by lepton universality violating (LUV) observables in semileptonic b → sℓℓ decays, muon anomalous magnetic moment and the origin of leptonic masses and mixing. Anomaly cancellation conditions require the addition of new chiral fermions in the model, one of which acts as a dark matter (DM) candidate when it is stabilised by an additional $$ {\mathcal{Z}}_2 $$ Z 2 symmetry. From our analysis, we show two different possible models with similar particle content that lead to quite contrasting neutrino mass origin and other phenomenology. The proposed models also have the potential to address the anomalous results in b → cℓνℓ decays like R(D), R(D∗), electron anomalous magnetic moment and the very recent KOTO anomaly in the kaon sector. We also discuss different possible collider signatures of our models which can be tested in future.

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Debajyoti Choudhury ◽  
Suvam Maharana ◽  
Vandana Sahdev ◽  
Divya Sachdeva

2003 ◽  
Vol 18 (16) ◽  
pp. 2769-2778
Author(s):  
Graham D. Kribs

I explain the theoretical connection between lepton flavor violation and muon g - 2 in supersymmetry1. Given any central value deviation of muon g - 2 from the standard model that is assumed to be due to weak scale supersymmetry, I show that stringent bounds on lepton flavor violating scalar masses can be extracted. These bounds are essentially independent of supersymmetric parameter space. I then briefly compare this indirect handle on supersymmetric lepton flavor violation with direct observation at a future lepton collider operating in the e- e- mode. This is a summary of a talk given at e- e-01: 4th International Workshop on Electron-Electron Interactions at TeV Energies.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Gorazd Cvetič ◽  
C. S. Kim ◽  
Donghun Lee ◽  
Dibyakrupa Sahoo

Abstract The disagreement between the standard model prediction and the experimental measurement of muon anomalous magnetic moment can be alleviated by invoking an additional particle which is either a vector boson (X1) or a scalar (X0). This new particle, with the mass mX ≲ 2mμ, can be searched for in the decay J/ψ → μ−μ+X, where X is missing. Our numerical study shows that the search is quite feasible at the BESIII experiment in the parameter space allowed by muon g − 2 measurements.


2018 ◽  
Vol 179 ◽  
pp. 01004 ◽  
Author(s):  
Tim Gorringe

The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.


Sign in / Sign up

Export Citation Format

Share Document