Relativistic rotator. II. The simplest representation spaces

1983 ◽  
Vol 28 (12) ◽  
pp. 3032-3040 ◽  
Author(s):  
A. Bohm ◽  
M. Loewe ◽  
L. C. Biedenharn ◽  
H. van Dam

Author(s):  
A. Bohm ◽  
M. Loewe ◽  
L. C. Biedenharn ◽  
H. van Dam




1988 ◽  
Vol 11 (2) ◽  
pp. 103-115 ◽  
Author(s):  
A. W. M. Dress ◽  
D. S. Rumschitzki


1977 ◽  
Vol 67 ◽  
pp. 139-158 ◽  
Author(s):  
Ralph Greenberg

Let p be a prime. If one adjoins to Q all pn-th roots of unity for n = 1,2,3, …, then the resulting field will contain a unique subfield Q∞ such that Q∞ is a Galois extension of Q with Gal (Q∞/Q) Zp, the additive group of p-adic integers. We will denote Gal (Q∞/Q) by Γ. In a previous paper [6], we discussed a conjecture relating p-adic L-functions to certain arithmetically defined representation spaces for Γ. Now by using some results of Iwasawa, one can reformulate that conjecture in terms of certain other representation spaces for Γ. This new conjecture, which we believe may be more susceptible to generalization, will be stated below.



Author(s):  
S. E. Cappell ◽  
R. Lee ◽  
E. Y. Miller




Sign in / Sign up

Export Citation Format

Share Document