relativistic string
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
J. Klusoň

Abstract We perform canonical analysis of new non-relativistic string action that was found recently in [32]. We also discuss its gauge fixed form.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ziqi Yan

Abstract Nonrelativistic string theory is a self-contained corner of string theory, with its string spectrum enjoying a Galilean-invariant dispersion relation. This theory is unitary and ultraviolet complete, and can be studied from first principles. In these notes, we focus on the bosonic closed string sector. In curved spacetime, nonrelativistic string theory is defined by a renormalizable quantum nonlinear sigma model in background fields, following certain symmetry principles that disallow any deformation towards relativistic string theory. We review previous proposals of such symmetry principles and propose a modified version that might be useful for supersymmetrizations. The appropriate target-space geometry determined by these local spacetime symmetries is string Newton-Cartan geometry. This geometry is equipped with a two-dimensional foliation structure that is restricted by torsional constraints. Breaking the symmetries that give rise to such torsional constraints in the target space will in general generate quantum corrections to a marginal deformation in the worldsheet quantum field theory. Such a deformation induces a renormalization group flow towards sigma models that describe relativistic strings.


Author(s):  
Eric Bergshoeff ◽  
Johannes Lahnsteiner ◽  
Lucia Romano ◽  
Ceyda Simsek

We show how Newton-Cartan geometry can be generalized to String Newton-Cartan geometry which is the geometry underlying non-relativistic string theory. Several salient properties of non-relativistic string theory in this geometric background are presented and a discussion of possible research for the future is outlined.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Chris D. A. Blair ◽  
Gerben Oling ◽  
Jeong-Hyuck Park

Abstract We explore the notion of isometries in non-Riemannian geometries. Such geometries include and generalise the backgrounds of non-relativistic string theory, and they can be naturally described using the formalism of double field theory. Adopting this approach, we first solve the corresponding Killing equations for constant flat non-Riemannian backgrounds and show that they admit an infinite-dimensional algebra of isometries which includes a particular type of supertranslations. These symmetries correspond to known worldsheet Noether symmetries of the Gomis-Ooguri non-relativistic string, which we now interpret as isometries of its non-Riemannian doubled background. We further consider the extension to supersymmetric double field theory and show that the corresponding Killing spinors can depend arbitrarily on the non-Riemannian directions, leading to “supersupersymmetries” that square to supertranslations.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Alexander Burinskii

The Dirac electron is considered as a particle-like solution consistent with its own Kerr–Newman (KN) gravitational field. In our previous works we considered the regularized by López KN solution as a bag-like soliton model formed from the Higgs field in a supersymmetric vacuum state. This bag takes the shape of a thin superconducting disk coupled with circular string placed along its perimeter. Using the unique features of the Kerr–Schild coordinate system, which linearizes Dirac equation in KN space, we obtain the solution of the Dirac equations consistent with the KN gravitational and electromagnetic field, and show that the corresponding solution takes the form of a massless relativistic string. Obvious parallelism with Heisenberg and Schrödinger pictures of quantum theory explains remarkable features of the electron in its interaction with gravity and in the relativistic scattering processes.


Author(s):  
Alexander Burinskii

We consider the Dirac electron as a nonperturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier models of the KN electron regularized by Israel and López, and consider the non-perturbative electron model as a bag model formed by Higgs mechanism of symmetry breaking. The López regularization determines the unique shape of the electron in the form of a thin disk with a Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string which is placed on the border of the disk and creates the caused by gravitation frame-dragging string tension produced by the vector potential of the Wilson loop. Using remarkable features of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show that this solution takes the form of a massless relativistic string. Parallelism of this model with quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties of the stringy electron model in the relativistic scattering processes.


Author(s):  
Alexander Burinskii

We consider the Dirac electron as a nonperturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier models of the KN electron regularized by Israel and López, and consider the non-perturbative electron model as a bag model formed by Higgs mechanism of symmetry breaking. The López regularization determines the unique shape of the electron in the form of a thin disk with a Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string which is placed on the border of the disk and creates the caused by gravitation frame-dragging string tension produced by the vector potential of the Wilson loop. Using remarkable features of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show that this solution takes the form of a massless relativistic string. Parallelism of this model with quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties of the stringy electron model in the relativistic scattering processes.


2020 ◽  
Author(s):  
Александр Буринский

We consider the Dirac electron as a non-perturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational field. In our previous works we regularized the model of electron suggested by Israel and Lopez on the base of KN solution. Our model of electron was shaped similar to the bag models - the thin superconducting disk coupled with circular string placed along its perimeter. The specific feature of the KN string was its orientifold (two-faced) structure. In this work we use unique features of the Kerr-Schild coordinate system, which allows us to linearize Dirac equations in KN background, and obtain the exact solutions of the Dirac equations consistent with the KN gravitational and electromagnetic field. We show that the corresponding solution take the form of a massless relativistic string. Strong parallelism with quantum theory, which appears by our treatment, explains remarkable properties of the electron in relativistic scattering processes, which allow us to consider it as a point-like particle.


Author(s):  
Alexander Burinskii

We consider the Dirac electron as a nonperturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier models of the KN electron regularized by Israel and López, and consider the non-perturbative electron model as a bag model formed by Higgs mechanism of symmetry breaking. The The López regularization determines the unique shape of the electron in the form of a thin disk with a Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string which is placed on the border of the disk and creates the caused by gravitation frame-dragging string tension produced by the vector potential of the Wilson loop. Using remarkable features of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show that this solution takes the form of a massless relativistic string. Parallelism of this model with quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties of the stringy electron model in the relativistic scattering processes.


2020 ◽  
Author(s):  
Eric Bergshoeff ◽  
Johannes Lahnsteiner ◽  
Luca Romano ◽  
Ceyda Simsek

Sign in / Sign up

Export Citation Format

Share Document