Numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration by a lattice Boltzmann model

2009 ◽  
Vol 80 (1) ◽  
Author(s):  
Sheng Chen ◽  
Jonas Tölke ◽  
Manfred Krafczyk
2021 ◽  
Vol 2097 (1) ◽  
pp. 012024
Author(s):  
Jianhu Wang ◽  
Zhongdi Duan ◽  
Cheng Cheng ◽  
Wenyong Tang

Abstract An adsorption model for fluid flow, heat, and mass transfer of the adsorbent bed was established. Based on the single relaxation time lattice Boltzmann method, a dual-distributed lattice Boltzmann model of density and concentration was established to solve the fluid flow and mass transfer process in the surface area of the adsorbent bed. The adsorption and heat transfer process on the surface of the adsorbent bed was incorporated into the dual-distributed lattice Boltzmann model by the fourth-order Runge-Kutta finite difference method. The multiphysics fields under Poiseuille flow were simulated by the presented model, and the adsorption capacity and temperature distribution during the adsorption process were investigated.


Sign in / Sign up

Export Citation Format

Share Document