Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map

2009 ◽  
Vol 80 (6) ◽  
Author(s):  
A. Akaishi ◽  
A. Shudo
2013 ◽  
Vol 22 (3) ◽  
pp. 030502 ◽  
Author(s):  
Can-Jun Wang ◽  
Ke-Li Yang ◽  
Shi-Xian Qu

1995 ◽  
Vol 05 (01) ◽  
pp. 275-279
Author(s):  
José Alvarez-Ramírez

We examine crisis phenomena for a map that is piecewise linear and depend continuously of a parameter λ0. There are two straight lines Γ+ and Γ− along which the map is continuous but has two one-sided derivatives. As the parameter λ0 is varied, a periodic orbit Ƶp may collide with the borders Γ+ and Γ− to disappear. While in most reported crisis structures, a chaotic attractor is destroyed by the presence of (homoclinic or heteroclinic) tangencies between unstable periodic orbits, in this case the chaotic attractor is destroyed by the birth of an attracting periodic orbit Ƶp into that of attraction of the chaotic set. The birth of Ƶp is due to a border-collision phenomenon taking place at Γ+ ∪Γ−.


2014 ◽  
Vol 30 (5) ◽  
pp. 583-597
Author(s):  
Donggyu Lee ◽  
Dongjin Lee ◽  
Hyunje Choi ◽  
Sungbae Jo

Author(s):  
S.J Hogan ◽  
L Higham ◽  
T.C.L Griffin

In this paper, we consider periodic solutions of discontinuous non-smooth maps. We show how the fixed points of a general piecewise linear map with a discontinuity (‘a map with a gap’) behave under parameter variation. We show in detail all the possible behaviours of period 1 and period 2 solutions. For positive gaps, we find that period 2 solutions can exist independently of period 1 solutions. Conversely, for negative gaps, period 1 and period 2 solutions can coexist. Higher periodic orbits can also exist and be stable and we give several examples of how these solutions behave under parameter variation. Finally, we compare our results with those of Jain & Banerjee (Jain & Banerjee 2003 Int. J. Bifurcat. Chaos 13 , 3341–3351) and Banerjee et al . (Banerjee et al . 2004 IEEE Trans. Circ. Syst. II 51 , 649–654) and explain their numerical simulations.


Author(s):  
O. Jenkinson ◽  
M. Pollicott ◽  
P. Vytnova

AbstractIommi and Kiwi (J Stat Phys 135:535–546, 2009) showed that the Lyapunov spectrum of an expanding map need not be concave, and posed various problems concerning the possible number of inflection points. In this paper we answer a conjecture in Iommi and Kiwi (2009) by proving that the Lyapunov spectrum of a two branch piecewise linear map has at most two points of inflection. We then answer a question in Iommi and Kiwi (2009) by proving that there exist finite branch piecewise linear maps whose Lyapunov spectra have arbitrarily many points of inflection. This approach is used to exhibit a countable branch piecewise linear map whose Lyapunov spectrum has infinitely many points of inflection.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550184 ◽  
Author(s):  
Carlos Lopesino ◽  
Francisco Balibrea-Iniesta ◽  
Stephen Wiggins ◽  
Ana M. Mancho

In this paper, we prove the existence of a chaotic saddle for a piecewise-linear map of the plane, referred to as the Lozi map. We study the Lozi map in its orientation and area preserving version. First, we consider the autonomous version of the Lozi map to which we apply the Conley–Moser conditions to obtain the proof of a chaotic saddle. Then we generalize the Lozi map on a nonautonomous version and we prove that the first and the third Conley–Moser conditions are satisfied, which imply the existence of a chaotic saddle. Finally, we numerically demonstrate how the structure of this nonautonomous chaotic saddle varies as parameters are varied.


Sign in / Sign up

Export Citation Format

Share Document