local structures
Recently Published Documents


TOTAL DOCUMENTS

1032
(FIVE YEARS 240)

H-INDEX

47
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Huanqing Zhang ◽  
Honggang Sun ◽  
Qiutong Li ◽  
Li Wang

The local structures of U-Co melts have been studied by first-principle calculations. Two sub-peaks are observed in the first peaks of U-U pair distribution functions. The Voronoi polyhedral analyses also show two separate core-shell U-U distances. Therefore, the calculated results propose that U atoms will play dual roles, “chemical” and “topological”, in the local structures of U-Co melts. In addition, the chemical effect of U atoms will be strengthened when containing more U atoms. The interaction of Co and U atoms is slightly affected by the compositions. The Co-centered clusters are mostly prism-like or antiprism-like polyhedral, which can be predicted by the solute-solvent model. The distribution of the coordinated numbers of Co atoms is much narrower than that of U atoms, showing relatively stable Co-centered clusters. The chemical and topological roles of U atoms are intuitively observed in the electron density of U-Co melts, which presents both metallic and covalent bonding characteristics for U-U bonds. In the end, we conclude that the partial localization of U 5f-electron is responsible for the dual roles of U atoms. The present results provide a theoretical understanding of the origin of the local structures of U-Co melts.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Natalia Lukasheva ◽  
Dmitry Tolmachev ◽  
Hector Martinez-Seara ◽  
Mikko Karttunen

Electrostatic interactions have a determining role in the conformational and dynamic behavior of polyelectrolyte molecules. In this study, anionic polyelectrolyte molecules, poly(glutamic acid) (PGA) and poly(aspartic acid) (PASA), in a water solution with the most commonly used K+ or Na+ counterions, were investigated using atomistic molecular dynamics (MD) simulations. We performed a comparison of seven popular force fields, namely AMBER99SB-ILDN, AMBER14SB, AMBER-FB15, CHARMM22*, CHARMM27, CHARMM36m and OPLS-AA/L, both with their native parameters and using two common corrections for overbinding of ions, the non-bonded fix (NBFIX), and electronic continuum corrections (ECC). These corrections were originally introduced to correct for the often-reported problem concerning the overbinding of ions to the charged groups of polyelectrolytes. In this work, a comparison of the simulation results with existing experimental data revealed several differences between the investigated force fields. The data from these simulations and comparisons with previous experimental data were then used to determine the limitations and strengths of these force fields in the context of the structural and dynamic properties of anionic polyamino acids. Physical properties, such as molecular sizes, local structure, and dynamics, were studied using two types of common counterions, namely potassium and sodium. The results show that, in some cases, both the macroion size and dynamics depend strongly on the models (parameters) for the counterions due to strong overbinding of the ions and charged side chain groups. The local structures and dynamics are more sensitive to dihedral angle parameterization, resulting in a preference for defined monomer conformations and the type of correction used. We also provide recommendations based on the results.


Author(s):  
Ryoma Yoneda ◽  
Kosuke Beppu ◽  
Tsuyoshi Maeda ◽  
Takahiro Wada

Abstract We characterized the optical and electronic properties of chalcopyrite-type Cu(Al,In)Se2, which is a candidate for wide-bandgap solar cell materials. The bandgap energy was determined from diffuse reflectance spectra. The band gap energy increased from 1.00 eV for CuInSe2 to 2.61 eV for CuAlSe2 with an increase in the Al content. The ionization energy corresponding to the energy levels of the valence band maximum (VBM) was determined using photoemission yield spectroscopy (PYS). The VBM level of the Cu(Al,In)Se2 system stayed relatively constant, but the conduction band minimum (CBM) level increased with increasing Al content. To analyze the local structures of Cu and In atoms in Cu(Al,In)Se2, Cu and In K-edge X-ray absorption fine structure (XAFS) spectra were measured at SPring-8. We discuss the crystallographic characteristics of Cu(Al,In)Se2 based on the results of the XAFS analyses and a comparison of the phase diagrams of the Cu2Se-Al2Se3, Cu2Se-In2Se3, and Cu2Se-Ga2Se3 systems.


Author(s):  
Yuji Kikukawa ◽  
Yui Sakamoto ◽  
Hikari Hirasawa ◽  
Yushi Kurimoto ◽  
Hiroya Iwai ◽  
...  

Elucidation of the correlation between the catalytic performance and the structures of active sites on inorganic materials provides insights into the chemistry of the local structures on metal oxide catalysts....


2021 ◽  
Vol 68 (6) ◽  
pp. 1-42
Author(s):  
Weiming Feng ◽  
Heng Guo ◽  
Yitong Yin ◽  
Chihao Zhang

We give new algorithms based on Markov chains to sample and approximately count satisfying assignments to k -uniform CNF formulas where each variable appears at most d times. For any k and d satisfying kd < n o(1) and k ≥ 20 log k + 20 log d + 60, the new sampling algorithm runs in close to linear time, and the counting algorithm runs in close to quadratic time. Our approach is inspired by Moitra (JACM, 2019), which remarkably utilizes the Lovász local lemma in approximate counting. Our main technical contribution is to use the local lemma to bypass the connectivity barrier in traditional Markov chain approaches, which makes the well-developed MCMC method applicable on disconnected state spaces such as SAT solutions. The benefit of our approach is to avoid the enumeration of local structures and obtain fixed polynomial running times, even if k = ω (1) or d = ω (1).


Author(s):  
I. Yu. Chernova ◽  
◽  
D. K. Nourgaliev ◽  
O. S. Chernova ◽  
O. V. Luneva ◽  
...  

Structural and geomorphological methods are often applied to the search for small oil-producing structures. Morphometric analysis of digital elevation models has proved to be the most informative one. Morphometric surfaces can be used to evaluate the direction and amplitude of vertical movements, to outline local and regional neotectonic structures and assess their petroleum saturation. This paper shows how to enhance the traditional morphometric analysis with GIS (geographic information systems) tools. A manifold increase in the efficiency of morphometric analysis takes it to a qualitatively new level. Setting specific parameters for some geoprocessing tools (for example, stream network tools) can be very important when studying local structures in small areas. In case of large territories, the output result is almost independent of the calculation errors. The improved technique proposed in this paper was tested on a large territory located in the Volga region. As a result, high-order morphometric surfaces were obtained, which was not possible before. In addition, a statistically significant relationship was discovered between morphometric surfaces and distribution of oil deposits, which can be considered a reliable prospecting indicator in the Volga-Ural petroleum province. Keywords: neotectonics; structural and morphological methods; geoinformation systems; hydrocarbon potential assessment.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Duc-Chau Nguyen ◽  
Chia-Chin Chu ◽  
Aswin kumar Anbalagan ◽  
Chih-Hao Lee ◽  
Chia-Seng Chang

Metal-oxygen bonding of the Ce-doped LaCoO3 system remains largely unexplored despite extensive studies on its magnetic properties. Here, we investigate the structure and local structure of nanoscale La1-xCexCoO3, with x = 0, 0.2, and 0.4, using the Rietveld refinement and synchrotron X-ray absorption techniques, complemented by topological analysis of experimental electron density and electron energy distribution. The Rietveld refinement results show that LaCoO3 subject to Ce addition is best interpretable by a model of cubic symmetry in contrast to the pristine LaCoO3, conventionally described by either a monoclinic model or a rhombohedral model. Ce4+/Co2+ are more evidently compatible dopants than Ce3+ for insertion into the main lattice. X-ray absorption data evidence the partially filled La 5d-band of the pristine LaCoO3 in accordance with the presence of La–O bonds with the shared-type atomic interaction. With increasing x, the increased Ce spectroscopic valence and enhanced La–O ionic bonding are noticeable. Characterization of the local structures around Co species also provides evidence to support the findings of the Rietveld refinement analysis.


2021 ◽  
Author(s):  
Fang Zhou ◽  
Chang Su ◽  
Shuqi Xu ◽  
Linyuan Lü

Abstract In real-world networks, there usually exist a small set of nodes that play an important role in the structure and function of networks. Those vital nodes can influence most other nodes in the network via a spreading process. While most of the existing works focused on vital nodes that can maximize the spreading size in the final stage, which we call final influencers, recent work proposed the idea of fast influencers, which emphasizes nodes’ spreading capacity at the early stage. Despite the recent surge of efforts in identifying these two types of influencers in networks, there remained limited research on untangling the differences between fast influencers and final influencers. In this paper, we first distinguish the two types of influencers: fast-only influencers and final-only influencers. The former is defined as individuals who can achieve a high spreading effect at the early stage but lose their superiority in the final stage, and the latter are those individuals that fail to exhibit a prominent spreading performance at the early stage but influence a large fraction of nodes at the final stage. Further experiments based on eight empirical datasets, we reveal the key differences between the two types of influencers concerning their spreading capacity and the local structures. We also analyze how network degree assortativity influences the fraction of the proposed two types of influencers. The results demonstrate that with the increase of degree assortativity, the fraction of the fast-only influencers decreases, which indicates that more fast influencers tend to keep their superiority at the final stage. Our study provides insights into the differences and evolution of different types of influencers and has important implications for various empirical applications, such as advertisement marketing, and epidemic suppressing.


2021 ◽  
Vol 13 (24) ◽  
pp. 5121
Author(s):  
Yu Zhou ◽  
Yi Li ◽  
Weitong Xie ◽  
Lu Li

It is very common to apply convolutional neural networks (CNNs) to synthetic aperture radar (SAR) automatic target recognition (ATR). However, most of the SAR ATR methods using CNN mainly use the image features of SAR images and make little use of the unique electromagnetic scattering characteristics of SAR images. For SAR images, attributed scattering centers (ASCs) reflect the electromagnetic scattering characteristics and the local structures of the target, which are useful for SAR ATR. Therefore, we propose a network to comprehensively use the image features and the features related to ASCs for improving the performance of SAR ATR. There are two branches in the proposed network, one extracts the more discriminative image features from the input SAR image; the other extracts physically meaningful features from the ASC schematic map that reflects the local structure of the target corresponding to each ASC. Finally, the high-level features obtained by the two branches are fused to recognize the target. The experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset prove the capability of the SAR ATR method proposed in this letter.


Author(s):  
Natalia Lukasheva ◽  
Dmitry Tolmachev ◽  
Hector Martinez-Seara ◽  
Mikko Karttunen

Electrostatic interactions have a determining role in conformational and dynamic behavior of polyelectrolyte molecules [1]. In this study, anionic polyelectrolyte molecules, poly(glutamic acid) (PGA) and poly(aspartic acid) (PASA), in water solution with the most commonly used K+ or Na+ counterions were investigated using atomistic molecular dynamics (MD) simulations. Seven common force fields, AMBER99SB-ILDN, AMBER14SB, AMBER-FB15, CHARMM22*, CHARMM27, CHARMM36m and OPLS-AA/L, both with their native parameters and with the non-bonded fix (NBFIX) and electronic continuum corrections (ECC) to were studied. These corrections have bene introduced to correct for the problem of overbinding of ions to the charged groups of polyelectrolytes. Physical properties, such as molecular sizes, local structure and dynamics, were studied using two types of common counterions, potassium and sodium. The results show that in some cases, the macroion size and dynamics depend strongly on the models (parameters) for the counterions due to strong overbinding of ions and charged side chain groups. The local structures and dynamics are more sensitive on dihedral angle parameterization resulting in a preference for defined monomer conformations amd the type of correction used.


Sign in / Sign up

Export Citation Format

Share Document