scholarly journals Threshold for Chaos and Thermalization in the One-Dimensional Mean-Field Bose-Hubbard Model

2009 ◽  
Vol 102 (2) ◽  
Author(s):  
Amy C. Cassidy ◽  
Douglas Mason ◽  
Vanja Dunjko ◽  
Maxim Olshanii
2020 ◽  
Vol 93 (6) ◽  
Author(s):  
Johannes Sicks ◽  
Heiko Rieger

Abstract In the one-dimensional Bose-Hubbard model with on-site and nearest-neighbor interactions, a gapped phase characterized by an exotic non-local order parameter emerges, the Haldane insulator. Bose-Hubbard models with cavity-mediated global range interactions display phase diagrams, which are very similar to those with nearest-neighbor repulsive interactions, but the Haldane phase remains elusive there. Here we study the one-dimensional Bose-Hubbard model with nearest-neighbor and cavity-mediated global-range interactions and scrutinize the existence of a Haldane Insulator phase. With the help of extensive quantum Monte-Carlo simulations we find that in the Bose-Hubbard model with only cavity-mediated global-range interactions no Haldane phase exists. For a combination of both interactions, the Haldane Insulator phase shrinks rapidly with increasing strength of the cavity-mediated global-range interactions. Thus, in spite of the otherwise very similar behavior the mean-field like cavity-mediated interactions strongly suppress the non-local order favored by nearest-neighbor repulsion in some regions of the phase diagram. Graphical abstract


AIP Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 125127
Author(s):  
Václav Janiš ◽  
Antonín Klíč ◽  
Jiawei Yan

Sign in / Sign up

Export Citation Format

Share Document