long range interactions
Recently Published Documents


TOTAL DOCUMENTS

1744
(FIVE YEARS 281)

H-INDEX

75
(FIVE YEARS 13)

Author(s):  
Ting XIE ◽  
Andrea Orbán ◽  
Xiaodong Xing ◽  
Eliane Luc-Koenig ◽  
Romain Vexiau ◽  
...  

Abstract Ultracold temperatures in dilute quantum gases opened the way to an exquisite control of matter at the quantum level. Here we focus on the control of ultracold atomic collisions using a laser to engineer their interactions at large interatomic distances. We show that the entrance channel of two colliding ultracold atoms can be coupled to a repulsive collisional channel by the laser light so that the overall interaction between the two atoms becomes repulsive: this prevents them to come close together and to undergo inelastic processes, thus protecting the atomic gases from unwanted losses. We illustrate such an optical shielding mechanism with 39K and 133Cs atoms colliding at ultracold temperature (<1 microkelvin). The process is described in the framework of the dressed-state picture and we then solve the resulting stationary coupled Schrödinger equations. The role of spontaneous emission and photoinduced inelastic scattering is also investigated as possible limitations of the shielding efficiency. We predict an almost complete suppression of inelastic collisions over a broad range of Rabi frequencies and detunings from the 39K D2 line of the optical shielding laser, both within the [0, 200 MHz] interval. We found that the polarization of the shielding laser has a minor influence on this efficiency. This proposal could easily be formulated for other bialkali-metal pairs as their long-range interaction are all very similar to each other.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Alejandro La Greca ◽  
Nicolás Bellora ◽  
François Le Dily ◽  
Rodrigo Jara ◽  
Ana Silvina Nacht ◽  
...  

Estrogen (E2) and Progesterone (Pg), via their specific receptors (ERalpha and PR), are major determinants in the development and progression of endometrial carcinomas, However, their precise mechanism of action and the role of other transcription factors involved are not entirely clear. Using Ishikawa endometrial cancer cells, we report that E2 treatment exposes a set of progestin-dependent PR binding sites which include both E2 and progestin target genes. ChIP-seq results from hormone-treated cells revealed a non-random distribution of PAX2 binding in the vicinity of these estrogen-promoted PR sites. Altered expression of hormone regulated genes in PAX2 knockdown cells suggests a role for PAX2 in fine-tuning ERalpha and PR interplay in transcriptional regulation. Analysis of long-range interactions by Hi-C coupled with ATAC-seq data showed that these regions, that we call 'progestin control regions' (PgCRs), exhibited an open chromatin state even before hormone exposure and were non-randomly associated with regulated genes. Nearly 20% of genes potentially influenced by PgCRs were found to be altered during progression of endometrial cancer. Our findings suggest that endometrial response to progestins in differentiated endometrial tumor cells results in part from binding of PR together with PAX2 to accessible chromatin regions. What maintains these regions open remains to be studied.


2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Takaaki Minato ◽  
Koudai Sugimoto ◽  
Tomotaka Kuwahara ◽  
Keiji Saito

Atoms ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Chandra M. Adhikari ◽  
Ulrich D. Jentschura

Pressure shifts inside an atomic beam are among the more theoretically challenging effects in high-precision measurements of atomic transitions. A crucial element in their theoretical analysis is the understanding of long-range interatomic interactions inside the beam. For excited reference states, the presence of quasi-degenerate states leads to additional challenges, due to the necessity to diagonalize large matrices in the quasi-degenerate hyperfine manifolds. Here, we focus on the interactions of hydrogen atoms in reference states composed of an excited nD state (atom A), and in the metastable 2S state (atom B). We devote special attention to the cases n=3 and n=8. For n=3, the main effect is generated by quasi-degenerate virtual P states from both atoms A and B and leads to experimentally relevant second-order long-range (van-der-Waals) interactions proportional to the sixth inverse power of the interatomic distance. For n=8, in addition to virtual states with two states of P symmetry, one needs to take into account combined virtual P and F states from atoms A and B. The numerical value of the so-called C6 coefficients multiplying the interaction energy was found to grow with the principal quantum number of the reference D state; it was found to be of the order of 1011 in atomic units. The result allows for the calculation of the pressure shift inside atomic beams while driving transitions to nD states.


2022 ◽  
Vol 64 (3) ◽  
pp. 303
Author(s):  
В.Л. Карбовский ◽  
А.А. Романский ◽  
Л.И. Карбовская ◽  
В.В. Стонис

The total and partial densities of electronic states of gold monolayer structures of different symmetry are calculated by the quantum mechanical calculations methods in the DFT approximation. It is shown that the first coordination sphere is determinant in the formation of the fine structure and the extent of the valence bands of the monolayer gold structures under study. The peaks splitting of the TDOS curve, which leads to its finer structure, is influenced not only by the lengths of interatomic bonds but also by the mutual arrangement of atoms. The influence of long-range interactions on the electronic structure of gold monolayers has been established. For example, for the (110) plane, a change in the atomic ordering in the third coordination sphere as a result of the introduction of a vacancy leads to noticeable changes in the TDOS curve, which indicates either a significant role of the atoms of the third coordination sphere or a significant redistribution of the interaction of d-orbitals of different symmetries of close neighbours. A correlation between the packing density, as well as the number of neighbours in the first coordination sphere, and the width of the energy band of gold monolayers has been established.


2022 ◽  
Vol 2022 (01) ◽  
pp. 016
Author(s):  
Cristian Gaidau ◽  
Jessie Shelton

Abstract We re-examine the gravitational capture of dark matter (DM) through long-range interactions. We demonstrate that neglecting the thermal motion of target particles, which is often a good approximation for short-range capture, results in parametrically inaccurate results for long-range capture. When the particle mediating the scattering process has a mass that is small in comparison to the momentum transfer in scattering events, correctly incorporating the thermal motion of target particles results in a quadratic, rather than logarithmic, sensitivity to the mediator mass, which substantially enhances the capture rate. We quantitatively assess the impact of this finite temperature effect on the captured DM population in the Sun as a function of mediator mass. We find that capture of DM through light dark photons, as in e.g. mirror DM, can be powerfully enhanced, with self-capture attaining a geometric limit over much of parameter space. For visibly-decaying dark photons, thermal corrections are not large in the Sun, but may be important in understanding long-range DM capture in more massive bodies such as Population III stars. We additionally provide the first calculation of the long-range DM self-evaporation rate.


Soft Matter ◽  
2022 ◽  
Author(s):  
Dominik Schildknecht ◽  
Anastasia N Popova ◽  
Jack Stellwagen ◽  
Matthew Thomson

The control of far-from-equilibrium physical systems, including active materials, requires advanced control strategies due to the non-linear dynamics and long-range interactions between particles, preventing explicit solutions to optimal control problems....


Sign in / Sign up

Export Citation Format

Share Document