dynamical mean field theory
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 75)

H-INDEX

58
(FIVE YEARS 7)

2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Rulei Han ◽  
Danqing Hu ◽  
Jiangfan Wang ◽  
Yi-feng Yang

Author(s):  
Luis Craco ◽  
Stefano Leoni

Abstract Using density functional dynamical mean-field theory, we show how correlation effects lead to pseudogap and Kondo-quasiparticle features in the electronic structure of pure and doped KFe2Se2 superconductor. Therein, correlation- and doping-induced orbital differentiation are linked to the emergence of an incoherent-coherent crossover in the normal state of KFe2Se2 superconductor. This crossover explains the puzzling temperature and doping dependent evolution of resistivity and Hall coefficient, seen in experiments of alkali-metal intercalated iron-selenide superconductors. Our microscopic description emphasises the role of incoherent and coherent electronic excitations towards unconventional transport responses of strange, bad-metals.


2021 ◽  
Vol 2021 (12) ◽  
pp. 124008
Author(s):  
Francesca Mignacco ◽  
Florent Krzakala ◽  
Pierfrancesco Urbani ◽  
Lenka Zdeborová

Abstract We analyze in a closed form the learning dynamics of the stochastic gradient descent (SGD) for a single-layer neural network classifying a high-dimensional Gaussian mixture where each cluster is assigned one of two labels. This problem provides a prototype of a non-convex loss landscape with interpolating regimes and a large generalization gap. We define a particular stochastic process for which SGD can be extended to a continuous-time limit that we call stochastic gradient flow. In the full-batch limit, we recover the standard gradient flow. We apply dynamical mean-field theory from statistical physics to track the dynamics of the algorithm in the high-dimensional limit via a self-consistent stochastic process. We explore the performance of the algorithm as a function of the control parameters shedding light on how it navigates the loss landscape.


Author(s):  
Laura E Ratcliff ◽  
Luigi Genovese ◽  
Hyowon Park ◽  
Peter B. Littlewood ◽  
Alejandro Lopez-Bezanilla

Abstract A detailed exploration of the f-atomic orbital occupancy space for UO2 is performed using a first principles approach based on density functional theory (DFT), employing a full hybrid functional within a systematic basis set. Specifically, the PBE0 functional is combined with an occupancy biasing scheme implemented in a wavelet-based algorithm which is adapted to large supercells. The results are compared with previous DFT+U calculations reported in the literature, while dynamical mean field theory (DMFT) is also performed to provide a further base for comparison. This work shows that the computational complexity of the energy landscape of a correlated f-electron oxide is much richer than has previously been demonstrated. The resulting calculations provide evidence of the existence of multiple previously unexplored metastable electronic states of UO2, including those with energies which are lower than previously reported ground states.


2021 ◽  
Vol 155 (17) ◽  
pp. 174106
Author(s):  
Thibaut Arnoulx de Pirey ◽  
Alessandro Manacorda ◽  
Frédéric van Wijland ◽  
Francesco Zamponi

Sign in / Sign up

Export Citation Format

Share Document