mean field theory
Recently Published Documents


TOTAL DOCUMENTS

2825
(FIVE YEARS 351)

H-INDEX

109
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Yazdani-Kachoei ◽  
S. Rahimi ◽  
R. Ebrahimi-Jaberi ◽  
J. Nematollahi ◽  
S. Jalali-Asadabadi

AbstractWe investigate temperature, pressure, and localization dependence of thermoelectric properties, phonon and de Haas–van Alphen (dHvA) frequencies of the anti-ferromagnetic (AFM) CeIn$$_3$$ 3 using density functional theory (DFT) and local, hybrid, and band correlated functionals. It is found that the maximum values of thermopower, power factor, and electronic figure of merit of this compound occur at low (high) temperatures provided that the 4f-Ce electrons are (not) localized enough. The maximum values of the thermopower, power factor, electronic figure of merit (conductivity parameters), and their related doping levels (do not) considerably depend on the localization degree and pressure. The effects of pressure on these parameters substantially depend on the degree of localization. The phonon frequencies are calculated to be real which shows that the crystal is dynamically stable. From the phonon band structure, the thermal conductivity is predicted to be homogeneous. This prediction is found consistent with the thermal conductivity components calculated along three Cartesian directions. In analogous to the thermoelectric properties, it is found that the dHvA frequencies also depend on both pressure and localization degree. To ensure that the phase transition at Néel temperature cannot remarkably affect the results, we verify the density of states (DOS) of the compound at the paramagnetic phase constructing a non-collinear magnetic structure where the angles of the spins are determined so that the resultant magnetic moment vanishes. The non-collinear results reveal that the DOS and whence the thermoelectric properties of the compound are not changed considerably by the phase transition. To validate the accuracy of the results, the total and partial DOSs are recalculated using DFT plus dynamical mean-field theory (DFT+DMFT). The DFT+DMFT DOSs, in agreement with the hybrid DOSs, predict the Kondo effect in this compound.


Author(s):  
Hongwei Su ◽  
Zi-Wei Zhang ◽  
Guoxing Wen ◽  
Guan Yan

Over the past few decades, the study of epidemic propagation has caught widespread attention from many areas. The field of graphs contains a wide body of research, yet only a few studies explore epidemic propagation’s dynamics in “signed” networks. Motivated by this problem, in this paper we propose a new epidemic propagation model for signed networks, denoted as S-SIS. To explain our analysis, we utilized the mean field theory to demonstrate the theoretical results. When we compare epidemic propagation through negative links to those only having positive links, we find that a higher proportion of infected nodes actually spreads at a relatively small infection rate. It is also found that when the infection rate is higher than a certain value, the overall spreading in a signed network begins showing signs of suppression. Finally, in order to verify our findings, we apply the S-SIS model on Erdös–Rényi random network and scale-free network, and the simulation results is well consist with the theoretical analysis.


2022 ◽  
Vol 2022 (1) ◽  
pp. 013402
Author(s):  
Xiang Li ◽  
Mauro Mobilia ◽  
Alastair M Rucklidge ◽  
R K P Zia

Abstract We investigate the long-time properties of a dynamic, out-of-equilibrium network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents’ opinions are fixed, they have a preferred degree which leads them to endlessly create and delete links. Our evolving network is shaped by homophily/heterophily, a form of social interaction by which individuals tend to establish links with others having similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-field analysis, we investigate how the sizes of the communities and the degree of homophily/heterophily affect the network structure. In particular, we show that when the network is subject to enough heterophily, an ‘overwhelming transition’ occurs: individuals of the smaller community are overwhelmed by links from the larger group, and their mean degree greatly exceeds the preferred degree. This and related phenomena are characterized by the network’s total and joint degree distributions, as well as the fraction of links across both communities and that of agents having fewer edges than the preferred degree. We use our mean-field theory to discuss the network’s polarization when the group sizes and level of homophily vary.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bing Shi ◽  
Zhaoxiang Song ◽  
Jianqiao Xu

With the development of the IoT (Internet of Things), sensors networks can bring a large amount of valuable data. In addition to be utilized in the local IoT applications, the data can also be traded in the connected edge servers. As an efficient resource allocation mechanism, the double auction has been widely used in the stock and futures markets and can be also applied in the data resource allocation in sensor networks. Currently, there usually exist multiple edge servers running double auctions competing with each other to attract data users (buyers) and producers (sellers). Therefore, the double auction market run on each edge server needs efficient mechanism to improve the allocation efficiency. Specifically, the pricing strategy of the double auction plays an important role on affecting traders’ profit, and thus, will affect the traders’ market choices and bidding strategies, which in turn affect the competition result of double auction markets. In addition, the traders’ trading strategies will also affect the market’s pricing strategy. Therefore, we need to analyze the double auction markets’ pricing strategy and traders’ trading strategies. Specifically, we use a deep reinforcement learning algorithm combined with mean field theory to solve this problem with a huge state and action space. For trading strategies, we use the Independent Parametrized Deep Q-Network (I-PDQN) algorithm combined with mean field theory to compute the Nash equilibrium strategies. We then compare it with the fictitious play (FP) algorithm. The experimental results show that the computation speed of I-PDQN algorithm is significantly faster than that of FP algorithm. For pricing strategies, the double auction markets will dynamically adjust the pricing strategy according to traders’ trading strategies. This is a sequential decision-making process involving multiple agents. Therefore, we model it as a Markov game. We adopt Multiagent Deep Deterministic Policy Gradient (MADDPG) algorithm to analyze the Nash equilibrium pricing strategies. The experimental results show that the MADDPG algorithm solves the problem faster than the FP algorithm.


2021 ◽  
Vol 30 (12) ◽  
pp. 16-20
Author(s):  
Chulan KWON

The spin-glass phase is characterized by the existence of many pure states due to random exchange interactions between spins. Parisi established the novel concept of replica symmetry breaking (RSB) from Sherrington Kirkpatrick’s mean-field theory via an abstract replica trick. In this article, his RSB scheme is reviewed from the view point of infinitely many pure states.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009748
Author(s):  
Benjamin G. Weiner ◽  
Andrew G. T. Pyo ◽  
Yigal Meir ◽  
Ned S. Wingreen

Eukaryotic cells partition a wide variety of important materials and processes into biomolecular condensates—phase-separated droplets that lack a membrane. In addition to nonspecific electrostatic or hydrophobic interactions, phase separation also depends on specific binding motifs that link together constituent molecules. Nevertheless, few rules have been established for how these ubiquitous specific, saturating, motif-motif interactions drive phase separation. By integrating Monte Carlo simulations of lattice-polymers with mean-field theory, we show that the sequence of heterotypic binding motifs strongly affects a polymer’s ability to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large blocks of single motifs typically form more inter-polymer bonds, which promotes phase separation. Notably, the sequence of binding motifs influences phase separation primarily by determining the conformational entropy of self-bonding by single polymers. This contrasts with systems where the molecular architecture primarily affects the energy of the dense phase, providing a new entropy-based mechanism for the biological control of phase separation.


Sign in / Sign up

Export Citation Format

Share Document