scholarly journals Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity

2017 ◽  
Vol 119 (2) ◽  
Author(s):  
S. Brodbeck ◽  
S. De Liberato ◽  
M. Amthor ◽  
M. Klaas ◽  
M. Kamp ◽  
...  
2010 ◽  
Vol 24 (29) ◽  
pp. 5653-5662 ◽  
Author(s):  
H. ELEUCH

The autocorrelation function of the light emitted by a microcavity containing a semiconductor quantum well in the nonstationary regime is investigated. An analytical expression in the weak pumping and strong coupling regime is derived. Furthermore, it is shown that the initial entangled state can be deduced from the nonstationary autocorrelation function.


2008 ◽  
Vol 77 (8) ◽  
Author(s):  
Gabriel Christmann ◽  
Raphaël Butté ◽  
Eric Feltin ◽  
Anas Mouti ◽  
Pierre A. Stadelmann ◽  
...  

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this Chapter we address the physics of Bose-Einstein condensation and its implications to a driven-dissipative system such as the polariton laser. We discuss the dynamics of exciton-polaritons non-resonantly pumped within a microcavity in the strong coupling regime. It is shown how the stimulated scattering of exciton-polaritons leads to formation of bosonic condensates that may be stable at elevated temperatures, including room temperature.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

This chapter presents experimental studies performed on planar semiconductor microcavities in the strong-coupling regime. The first section reviews linear experiments performed in the 1990s that evidence the linear optical properties of cavity exciton-polaritons. The chapter is then focused on experimental and theoretical studies of resonantly excited microcavity emission. We mainly describe experimental configuations in which stimulated scattering was observed due to formation of a dynamical condensate of polaritons. Pump-probe and cw experiments are described in addition. Dressing of the polariton dispersion and bistability of the polariton system due to inter-condensate interactions are discussed. The semiclassical and the quantum theories of these effects are presented and their results analysed. The potential for realization of devices is also discussed.


1997 ◽  
Vol 22 (3) ◽  
pp. 371-374 ◽  
Author(s):  
J. Bloch ◽  
R. Planel ◽  
V. Thierry-Mieg ◽  
J.M. Gérard ◽  
D. Barrier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document