Quantum Dynamics in Phase Space

1968 ◽  
Vol 21 (3) ◽  
pp. 180-183 ◽  
Author(s):  
G. S. Agarwal ◽  
E. Wolf
Keyword(s):  
2021 ◽  
Vol 154 (18) ◽  
pp. 184104
Author(s):  
Xinzijian Liu ◽  
Linfeng Zhang ◽  
Jian Liu

Author(s):  
A. Smerzi ◽  
V. Kondratyev ◽  
A. Bonasera
Keyword(s):  

1996 ◽  
Vol 104 (16) ◽  
pp. 6265-6277 ◽  
Author(s):  
Stavros Caratzoulas ◽  
Philip Pechukas

Author(s):  
J. E. Moyal

An attempt is made to interpret quantum mechanics as a statistical theory, or more exactly as a form of non-deterministic statistical dynamics. The paper falls into three parts. In the first, the distribution functions of the complete set of dynamical variables specifying a mechanical system (phase-space distributions), which are fundamental in any form of statistical dynamics, are expressed in terms of the wave vectors of quantum theory. This is shown to be equivalent to specifying a theory of functions of non-commuting operators, and may hence be considered as an interpretation of quantum kinematics. In the second part, the laws governing the transformation with time of these phase-space distributions are derived from the equations of motion of quantum dynamics and found to be of the required form for a dynamical stochastic process. It is shown that these phase-space transformation equations can be used as an alternative to the Schrödinger equation in the solution of quantum mechanical problems, such as the evolution with time of wave packets, collision problems and the calculation of transition probabilities in perturbed systems; an approximation method is derived for this purpose. The third part, quantum statistics, deals with the phase-space distribution of members of large assemblies, with a view to applications of quantum mechanics to kinetic theories of matter. Finally, the limitations of the theory, its uniqueness and the possibilities of experimental verification are discussed.


Author(s):  
Abraham Nitzan

The starting point of the classical description of motion is the Newton equations that yield a phase space trajectory (rN (t), pN (t)) for a given initial condition (rN (0), pN (0)). Alternatively one may describe classical motion in the framework of the Liouville equation (Section (1.2.2)) that describes the time evolution of the phase space probability density f (rN , pN ; t). For a closed system fully described in terms of a well specified initial condition, the two descriptions are completely equivalent. Probabilistic treatment becomes essential in reduced descriptions that focus on parts of an overall system, as was demonstrated in Sections 5.1–5.3 for equilibrium systems, and in Chapters 7 and 8 that focus on the time evolution of classical systems that interact with their thermal environments. This chapter deals with the analogous quantum mechanical problem. Within the limitations imposed by its nature as expressed, for example, by Heisenbergtype uncertainty principles, the Schrödinger equation is deterministic. Obviously it describes a deterministic evolution of the quantum mechanical wavefunction. The analog of the phase space probability density f (rN , pN ; t) is now the quantum mechanical density operator (often referred to as the “density matrix”), whose time evolution is determined by the quantum Liouville equation. Again, when the system is fully described in terms of a well specified initial wavefunction, the two descriptions are equivalent. The density operator formalism can, however, be carried over to situations where the initial state of the system is not well characterized and/or a reduced description of part of the overall system is desired. Such situations are considered later in this chapter.


Sign in / Sign up

Export Citation Format

Share Document