thermal environments
Recently Published Documents


TOTAL DOCUMENTS

903
(FIVE YEARS 228)

H-INDEX

63
(FIVE YEARS 9)

2022 ◽  
Vol 87 (791) ◽  
pp. 195-205
Author(s):  
Eisuke TOGASHI ◽  
Jun NAKAGAWA ◽  
Hiroshi MURAMATSU

2022 ◽  
Author(s):  
Yuheng Huang ◽  
Justin Lack ◽  
Grant Hoppel ◽  
John E Pool

The relationships between adaptive evolution, phenotypic plasticity, and canalization remain incompletely understood. Theoretical and empirical studies have made conflicting arguments on whether adaptive evolution may enhance or oppose the plastic response. Gene regulatory traits offer excellent potential to study the relationship between plasticity and adaptation, and they can now be studied at the transcriptomic level. Here we take advantage of three closely-related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. We measure the transcriptome-wide plasticity in gene expression levels and alternative splicing (intron usage) between warm and cold laboratory environments. We find that suspected adaptive changes in both gene expression and alternative splicing tend to neutralize the ancestral plastic response. Further, we investigate the hypothesis that adaptive evolution can lead to decanalization of selected gene regulatory traits. We find strong evidence that suspected adaptive gene expression (but not splicing) changes in cold-adapted populations are more vulnerable to the genetic perturbation of inbreeding than putatively neutral changes. We find some evidence that these patterns may reflect a loss of genetic canalization accompanying adaptation, although other processes including hitchhiking recessive deleterious variants may contribute as well. Our findings augment our understanding of genetic and environmental effects on gene regulation in the context of adaptive evolution.


2022 ◽  
Vol 14 (2) ◽  
pp. 952
Author(s):  
Kun Li ◽  
Xuefei Li ◽  
Keji Yao

Under the influence of the urban heat island effect, the thermal environments of urban built-up areas are poor, leading to the loss of urban vitality and the extreme deterioration of thermal comfort. In this paper, the outdoor thermal environment in Wuhan’s main urban area is studied via the use of field measurements. From June to August in the years 2015 to 2017, 20 measurement points were selected for monitoring from 08:00 to 19:00 h, which were located in spaces such as residential areas, parklands, commercial streets, and college/university campuses. The measurements for the same types of land and different types of land use are analyzed. A comprehensive thermal environment index is used to quantitatively evaluate the overall situations of thermal environments. The results showed that the cooling effect of vegetation shading was stronger than the effect of water evaporation and the maximum temperature difference between the two cooling methods reached 6.1 °C. The cooling effect of the canopy shading of tall trees was stronger than the effect of grassland transpiration and the maximum temperature difference was 2.8 °C. The streets with higher aspect ratios might improve the ventilation, but the wind speeds remained low, which did not provide a strong cooling effect. This study helps urban planners understand the thermal environment of Wuhan or similar cities with hot summer and diversified urban areas, and puts forward suggestions to reduce the heat island effect from the aspect of building layout, green coverage, shading mode, and street aspect ratio, so as to establish sustainable cities that are climate adaptable and environmentally friendly.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1701
Author(s):  
Kanghyun Lee ◽  
Robert D. Brown

Cities inadvertently create warmer and drier urban climate conditions than their surrounding areas through urbanization that replaces natural surfaces with impervious materials. These changes cause heat-related health problems and many studies suggest microclimatic urban design (MUD) as an approach to address these problems. In MUD-related research, although terrestrial radiation plays an important role in human thermal comfort and previous studies use thermal comfort models to identify human heat stress, few studies have addressed the effect of terrestrial radiation. This study develops the ground ratio factor (GRF) model to estimate the different terrestrial radiation according to different ground conditions. Three types of ground materials (asphalt, concrete, and grass) were considered in the model, and field studies were conducted in humid subtropical climate (Cfa) zone during the hot season (13 July to 19 September 2020). The model was validated by comparing the predicated terrestrial radiation (PTR) from the model with the actual terrestrial radiation (ATR). The results showed that there is a statistically significant strong correlation between PTR and ATR. The model can contribute to MUD strategies by updating existing human energy budget models, which can lead to the measurement of more accurate human thermal comfort for mitigating thermal environments.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yayun Zhu ◽  
Sanaa Sharaf ◽  
Basel Jamal Ali

Abstract People exercising under high ambient temperature will cause changes in physiological indicators. In order to study the thermal physiological state of the human body, we randomly selected 18 volunteers into the thermal environment exercise group and the room temperature exercise group. Two groups of volunteers performed aerobic exercises in different thermal environments. In the case of exercise performed every 15 min, the volunteers’ hemorheology, physical performance rating (RPE) value and rectal temperature (Tre) were tested. At the same time, we recorded the physiological indicators of the volunteers and simulated the thermal physiology. The results showed that there was a difference in the thermal physiology of the two groups of volunteers, and the hemorheology and the self-strain rating scale were highly correlated in the thermal environment (r=0.839, P<0.01). For this reason, we can conclude that exercising in a hot environment will make people have a heavier heat stress response, and thus render them more likely to undergo muscle fatigue. It is advised that exercising at high temperatures may be avoided as much as possible.


Author(s):  
Hoang Van Tung ◽  
Dao Nhu Mai ◽  
Vu Thanh Long

An analytical investigation on the nonlinear response of doubly curved panels constructed from homogeneous face sheets and carbon nanotube reinforced composite (CNTRC) core and subjected to external pressure in thermal environments is presented in this paper. Carbon nanotubes (CNTs) are reinforced into the core layer through uniform or functionally graded distributions. The properties of constituents are assumed to be temperature dependent and effective properties of CNTRC are determined using an extended rule of mixture. Governing equations are established within the framework of first order shear deformation theory taking into account geometrical imperfection, von Kármán–Donnell nonlinearity, panel-foundation interaction and elasticity of tangential edge restraints. These equations are solved using approximate analytical solutions and Galerkin method for simply supported panels. The results reveal that load carrying capacity of sandwich panels is stronger when boundary edges are more rigorously restrained and face sheets are thicker. Furthermore, elevated temperature has deteriorative and beneficial influences on the load bearing capability of sandwich panels with movable and restrained edges, respectively.


Sign in / Sign up

Export Citation Format

Share Document