charged scalar
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 70)

H-INDEX

32
(FIVE YEARS 7)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 47
Author(s):  
Ping Li ◽  
Rui Jiang ◽  
Jian Lv ◽  
Xianghua Zhai

In this paper, we study the perturbations of the charged static spherically symmetric black holes in the f(R)=R−2αR model by a scalar field. We analyze the quasinormal modes spectrum, superradiant modes, and superradiant instability of the black holes. The frequency of the quasinormal modes is calculated in the frequency domain by the third-order WKB method, and in the time domain by the finite difference method. The results by the two methods are consistent and show that the black hole stabilizes quicker for larger α satisfying the horizon condition. We then analyze the superradiant modes when the massive charged scalar field is scattered by the black hole. The frequency of the superradiant wave satisfies ω∈(μ2,ωc), where μ is the mass of the scalar field, and ωc is the critical frequency of the superradiance. The amplification factor is also calculated by numerical method. Furthermore, the superradiant instability of the black hole is studied analytically, and the results show that there is no superradiant instability for such a system.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Óscar J. C. Dias ◽  
Gary T. Horowitz ◽  
Jorge E. Santos

Abstract We study a family of four-dimensional, asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Surprisingly, the maximum charge for given mass is a nonsingular hairy black hole with nonzero Hawking temperature. The implications for Hawking evaporation are discussed.


2021 ◽  
Author(s):  
Nilanjana Kumar ◽  
Takaaki Nomura ◽  
Hiroshi Okada

Abstract We consider a model with multi-charged particles including vector-like fermions and a charged scalar under a local $U(1)_{\mu - \tau}$ symmetry. We search for allowed parameter region explaining muon anomalous magnetic moment (muon $g-2$) and $b \to s \ell^+ \ell^-$ anomalies, satisfying constraints from the lepton flavor violations, $Z$ boson decays, meson anti-meson mixing and collider experiments. Carrying out numerical analysis, we explore the typical size of the muon $g-2$ and Wilson coefficients to explain $b \to s \ell^+ \ell^-$ anomalies in our model when all other experimental constraints are satisfied. We then discuss the collider physics of the multicharged vectorlike fermions, considering some benchmark points in the allowed parameter space. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Ricardo R. Florentino ◽  
Jorge C. Romão ◽  
João P. Silva

AbstractModels with scalar doublets and charged scalar singlets have the interesting property that they have couplings between one Z boson and two charged scalars of different masses. This property is often ignored in phenomenological analysis, as it is absent from models with only extra scalar doublets. We explore this issue in detail, considering $$h \rightarrow Z \gamma $$ h → Z γ , $$B \rightarrow X_s \gamma $$ B → X s γ , and the decay of a heavy charged scalar into a lighter one and a Z boson. We propose that the latter be actively searched for at the LHC, using the scalar sector of the Zee-type models as a prototype and proposing benchmark points which obey all current experimental data, and could be within reach of the LHC.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Óscar J. C. Dias ◽  
Gary T. Horowitz ◽  
Jorge E. Santos

Abstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1477
Author(s):  
Yen-Kheng Lim

In this paper we explore a solenoid configuration involving a magnetic universe solution embedded in an empty Anti-de Sitter (AdS) spacetime. This requires a non-trivial surface current at the interface between the two spacetimes, which can be provided by a charged scalar field. When the interface is taken to the AdS boundary, we recover the full AdS–Melvin spacetime. The stability of the AdS–Melvin solution is also studied by computing the gravitational free energy from the Euclidean action.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Fang-Min Cai ◽  
Wei-Jun Deng ◽  
Xin-Qiang Li ◽  
Ya-Dong Yang

Abstract With updated experimental data and improved theoretical calculations, several significant deviations are being observed between the Standard Model predictions and the experimental measurements of the branching ratios of $$ {\overline{B}}_{(s)}^0\to {D}_{(s)}^{\left(\ast \right)+}{L}^{-} $$ B ¯ s 0 → D s ∗ + L − decays, where L is a light meson from the set {π, ρ, K(∗)}. Especially for the two channels $$ {\overline{B}}^0\to {D}^{+}{K}^{-} $$ B ¯ 0 → D + K − and $$ {\overline{B}}_s^0\to {D}_s^{+}{\pi}^{-} $$ B ¯ s 0 → D s + π − , both of which are free of the weak annihilation contribution, the deviations observed can even reach 4–5σ. Here we exploit possible new-physics effects in these class-I non-leptonic B-meson decays within the framework of QCD factorization. Firstly, we perform a model-independent analysis of the effects from twenty linearly independent four-quark operators that can contribute, either directly or through operator mixing, to the quark-level b →$$ c\overline{u}d(s) $$ c u ¯ d s transitions. It is found that, under the combined constraints from the current experimental data, the deviations observed could be well explained at the 1σ level by the new-physics four-quark operators with γμ(1 − γ5) ⨂ γμ(1 − γ5) structure, and also at the 2σ level by the operators with (1 + γ5) ⨂ (1 − γ5) and (1 + γ5) ⨂ (1 + γ5) structures. However, the new-physics four-quark operators with other Dirac structures fail to provide a consistent interpretation, even at the 2σ level. Then, as two specific examples of model-dependent considerations, we discuss the case where the new-physics four-quark operators are generated by either a colorless charged gauge boson or a colorless charged scalar, with their masses fixed both at the 1 TeV. Constraints on the effective coefficients describing the couplings of these mediators to the relevant quarks are obtained by fitting to the current experimental data.


2021 ◽  
Vol 32 ◽  
Author(s):  
Khiem Hong Phan ◽  
Dzung Tri Tran

In this paper, we present general one-loop form factors for \(H\rightarrow \gamma^* \gamma^*\) in \(R_{\xi}\) gauge, considering all cases of two on-shell, one on-shell and two off-shell for final photons. The calculations are performed in standard model and in arbitrary beyond the standard models which charged scalar particles may be exchanged in one-loop diagrams. Analytic results for the form factors are shown in general forms which are expressed in terms of the Passarino-Veltman functions. We also confirm the results in previous computations which are available for the case of two on-shell photons. The \(\xi\)-independent of the result is also discussed. We find that numerical results are good stability with varying \(\xi=0,1\) and $\xi\rightarrow \infty\).


Sign in / Sign up

Export Citation Format

Share Document