Effects of anisotropic interaction on collision-induced absorption by pairs of linear molecules

1992 ◽  
Vol 68 (25) ◽  
pp. 3686-3689 ◽  
Author(s):  
Aleksandra Borysow ◽  
Massimo Moraldi
1988 ◽  
Vol 66 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Nguyen- Van-Thanh ◽  
I. Rossi

This paper deals with computations of the far-infrared collision-induced absorptions for polar linear molecules. We have considered Frost's theory for dipole- and quadrupole-induced dipole absorptions in bimolecular collisions, taking the anisotropy of the molecular polarizability into account. In addition to the induced rotational interaction, a translational effect may not be negligible. Detailed expressions for different contributions to the integrated intensities are reported for N2O. Using these calculated expressions and the moderately low pressure data, we have deduced a value for the quadrupole moment of N2O, [Formula: see text].


Author(s):  
Mark Hannibal ◽  
Jacob Varkey ◽  
Michael Beer

Workman and Langmore have recently proposed a procedure for isolating particular chromatin fragments. The method requires restriction endonuclease cutting of the chromatin and a probe, their digestion with two exonucleases which leave complimentary single strand termini and low temperature hybridization of these. We here report simple electron microscopic monitoring of the four reactions involved.Our test material was ϕX-174 RF DNA which is cut once by restriction endonuclease Xho I. The conversion of circles to linear molecules was followed in Kleinschmidt spreads. Plate I shows a circular and a linear DNA molecule. The rate of cutting is shown in Figure 1.After completion of the endonuclease cutting, one portion of the DNA was treated with exonuclease III, an enzyme known to digest the 3' terminals of double helical DNA. Aliquots when examined in the electron microscope reveal a decreasing length of double helix and increasing bushes at the ends.


Sign in / Sign up

Export Citation Format

Share Document