infrared radiation
Recently Published Documents


TOTAL DOCUMENTS

3191
(FIVE YEARS 511)

H-INDEX

70
(FIVE YEARS 8)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 44
Author(s):  
Xuan Deng ◽  
Yueming Wang ◽  
Guicheng Han ◽  
Tianru Xue

Aiming at the problem wherein temperature inversion accuracy is unstable due to the major differences in atmospheric transmittance under various observation paths, a method for measuring radiation characteristics of an aircraft engine’s hot parts and skin using a cooled middle-wave infrared camera is proposed. Based on the analysis of the aircraft’s infrared radiation characteristics, the atmospheric transmission model of any observation path was revised, the absolute radiation correction model was established, and the temperature inversion equation was calculated. Then, we used the quasi-Newton method to calculate the skin temperature and discussed uncertainty sources. After the theoretical study, an outfield test was carried out. A middle-wave infrared camera with a wavelength of 3.7–4.8 μm was applied to the actual experimental observation of the turbofan civil aviation aircraft. The ground observation distance was 15 km, and the flying height was 3 km. When implementing temperature inversion with the method presented in this paper, the surface temperature of the aircraft engine hot parts was 381 K, the correction uncertainty was ±10 K, the surface temperature of the skin was 296 K, and the correction uncertainty was ±6 K. As the experiment showed, the method in this paper can effectively implement infrared target temperature inversion and provide a reference for the quantification of infrared data.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Antai Chang ◽  
Xia Zheng ◽  
Hongwei Xiao ◽  
Xuedong Yao ◽  
Decheng Liu ◽  
...  

The main objective of the present work was to study the drying kinetics and obtain the optimum process parameters of cantaloupe slices using short-and medium-wave infrared radiation (SMIR) drying technology. The effect of three independent variables of infrared radiation temperature (55–65 °C), slice thickness (5–9 mm) and radiation distance (80–160 mm) on the L value, color difference (∆E), hardness and vitamin C content were investigated by using the Response Surface Methodology (RSM). The results showed that the Page model can adequately predict the moisture content between 55 and 65 °C (R2 > 0.99). The effective moisture diffusivity (Deff) varied from 5.26 × 10−10 to 2.09 × 10−9 m2/s and the activation energy (Ea) of the SMIR drying was 31.84 kJ/mol. Infrared radiation temperature and slice thickness exerted extremely significant effects on L value and color difference (ΔE) (p < 0.01), with higher infrared radiation temperature and thin slice thickness leading to a decrease in the L value and an increase in ΔE. Hardness and vitamin C content were significantly affected by infrared radiation temperature, slice thickness and radiation distance, of which the slice thickness was the most distinct factor affecting the hardness value. Higher infrared radiation temperature and larger slice thickness and radiation distance resulted in higher vitamin C degradation. For the given constraints (maximized vitamin C content and L value, minimized ΔE and hardness value), the optimum drying parameters were infrared radiation temperature 58.2 °C, slice thickness 6 mm and radiation distance 90 mm. Under the optimum drying combination conditions, the experimental values were 65.58 (L value), 8.57 (∆E), 10.49 N (hardness) and 106.58 mg/100 g (vitamin C content), respectively. This study is beneficial to the development of the cantaloupe food processing industry and provides more insights for the application of SMIR drying technology to improve the drying rate and product quality of cantaloupe.


2022 ◽  
pp. 004051752110683
Author(s):  
Zhi Chen ◽  
Huizhen Ke ◽  
Jian Wang ◽  
Yonggui Li ◽  
Hao Jia ◽  
...  

There has been much concern about germanium because of its special atomic nuclear structure to generate negative electrons and far-infrared ray. In this study, novel germanium-polyamide6 fibers were prepared by using micro–nano structured germanium particles as a functional component via melt spinning. The effects of germanium concentration on the morphology, mechanical, negative air ion-releasing, and far-infrared radiation properties of the germanium-polyamide6 fibers were systematically investigated. Besides, the antibacterial activity and mechanism of the fibers against Staphylococcus aureus and Escherichia coli were also discussed. Even though the added germanium particles negatively affected the mechanical performance of the fiber, they were distributed well in the polyamide6 substrate when the concentration was increased from 2% to 6%. Increasing the temperature and pressure induced the germanium-polyamide6 fibers to produce more negative air ions and high far-infrared emissivity. The negative air ion-releasing property of the fiber led to antibacterial performance against S. aureus with more than 99% antibacterial rate. The results confirmed the great application potential of germanium in healthcare, medical, home, and apparel textiles.


Sign in / Sign up

Export Citation Format

Share Document