exonuclease digestion
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kang Han ◽  
Sheng Liu ◽  
Yongsheng Cheng

DNA fluorescence in situ hybridization (FISH) has been widely used in diagnosis and genetic research. Traditional Bacterial artificial chromosome (BAC) or oligonucleotide based probe to detect DNA in situ is only effective when the target is relatively large, usually over 150Kb DNA fragments. And it involves heat denaturation steps to open the DNA for in situ hybridization. The heat process can affect the fine structure of nuclei. Here we reported a novel method based on Cas9 nickase and exonuclease digestion of double strand DNA and permanently mark the DNA in single strand state for FISH. With this novel design, we detected non-repetitive genomic loci as small as 2Kb.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weiwei Zhang ◽  
Ming Zheng ◽  
Shan Kong ◽  
Xian Li ◽  
Shuting Meng ◽  
...  

PurposeThe morbidity and mortality of gastric cancer (GC) remain high worldwide. In recent years, circular RNAs (circRNAs) have attracted widespread attention among cancer researchers due to the stable ring structure. The present work aims to find serum circRNA biomarkers that can be used in clinical applications and effective diagnosis.MethodsHsa_circ_0007507 was extracted through circRNA sequencing. Exonuclease digestion assay, actinomycin D, agarose gel electrophoresis (AGE), and Sanger sequencing verified the potential of hsa_circ_0007507 as a biomarker. Besides, a real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was established to detect the level of expression of hsa_circ_0007507. Twenty cases of GC and the paired adjacent tissues were collected to verify its overexpression. Then, serum samples from 30 cases of colorectal cancer, 30 cases of thyroid cancer, and 30 cases of breast cancer were collected to verify their organ specificity. Additionally, serum samples from 80 healthy people, 62 gastritis patients, 31 intestinal metaplasia patients, and 100 GC patients were collected, and the diagnostic efficacy was evaluated through analysis of the receiver operating characteristic (ROC) curve. Furthermore, 16 post-operative GC samples, samples of 65 relapsed patients and 36 non-relapsed patients were collected to evaluate the prognosis of GC.ResultsThe level of expression of hsa_circ_0007507 in GC tissues was up-regulated (p = 0.0121), which was consistent with the results of circRNA sequencing. Exonuclease digestion assay and actinomycin D confirmed that hsa_circ_0007507 had a stable structure and a longer half-life. In the analysis of organ specificity experiments, serum hsa_circ_0007507 did not have specificity for patients with colorectal cancer (p = 0.5319), thyroid cancer (p = 0.5422), or breast cancer (p = 0.5178). Analysis of diagnostic efficacy indicated that the expression of hsa_circ_0007507 was significantly higher than that of normal people (p <0.0001); the area under the ROC (AUC) was 0.832 (95% CI: 0.771-0.892); the diagnostic power of hsa_circ_0007507 was higher than that of CEA (AUC = 0.765, 95% CI: 0.697-0.833) and CA199 (AUC = 0.587, 95% CI: 0.504-0.67). Through diagnosis using a combination of the three, GC patients could be distinguished from normal people (AUC = 0.849), and higher diagnostic efficiency could be achieved. The expression of serum hsa_circ_0007507 in GC patients significantly decreased after surgery (p = 0.001). Besides, the expression of serum hsa_circ_0007507 in patients with post-operative recurrence was significantly up-regulated again (p = 0.0139).ConclusionsSerum hsa_circ_0007507 is differentially expressed in GC patients, post-operative GC patients, gastritis patients, intestinal metaplasia patients and relapsed patients, suggesting that serum hsa_circ_0007507 can be used as a new diagnostic and dynamic monitoring biomarker for GC.


2021 ◽  
Author(s):  
Vandana Kuttappan Nair ◽  
Chandrika Sharma ◽  
Mrittika Sengupta ◽  
Souradyuti Ghosh

<b>Layman Summary: </b>Rolling circle amplification (RCA) is a popular and extensively used bioanalytical tool. Like any nucleic acid amplifications, non-specific amplification may occur in it and risk generating false positive readouts. The work described in the manuscript investigates non-specific amplification in RCA as a function of ligation and exonuclease digestion assays during the synthesis of circular DNA. In particular, it investigates and compares the role of three different ligation techniques, namely splint-padlock ligation, cohesive end (sticky end ligation), and self-annealing ligation. In addition, it also probes the role of single exonuclease vs dual exonuclease digestions. We employed real time fluorescence to quantify the effect of these factors. Finally, our work hypothesizes the possible origins of non-specific amplification in RCA.


2021 ◽  
Author(s):  
Vandana Kuttappan Nair ◽  
Chandrika Sharma ◽  
Mrittika Sengupta ◽  
Souradyuti Ghosh

<b>Layman Summary: </b>Rolling circle amplification (RCA) is a popular and extensively used bioanalytical tool. Like any nucleic acid amplifications, non-specific amplification may occur in it and risk generating false positive readouts. The work described in the manuscript investigates non-specific amplification in RCA as a function of ligation and exonuclease digestion assays during the synthesis of circular DNA. In particular, it investigates and compares the role of three different ligation techniques, namely splint-padlock ligation, cohesive end (sticky end ligation), and self-annealing ligation. In addition, it also probes the role of single exonuclease vs dual exonuclease digestions. We employed real time fluorescence to quantify the effect of these factors. Finally, our work hypothesizes the possible origins of non-specific amplification in RCA.


Author(s):  
Juan Canoura ◽  
Haixiang Yu ◽  
Obtin Alkhamis ◽  
Daniel Roncancio ◽  
Rifat Farhana ◽  
...  

2020 ◽  
Vol 48 (20) ◽  
pp. 11215-11226
Author(s):  
Naomi Yamada ◽  
Matthew J Rossi ◽  
Nina Farrell ◽  
B Franklin Pugh ◽  
Shaun Mahony

Abstract The ChIP-exo assay precisely delineates protein–DNA crosslinking patterns by combining chromatin immunoprecipitation with 5′ to 3′ exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein–DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein–DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein–DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein–DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein–DNA complexes.


2019 ◽  
Author(s):  
Naomi Yamada ◽  
Matthew J. Rossi ◽  
Nina Farrell ◽  
B. Franklin Pugh ◽  
Shaun Mahony

AbstractThe ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5′ to 3′ exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between the subunits of a regulatory complex. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. We demonstrate that our approach can recover aspects of regulatory complex spatial organization when applied to collections of ChIP-exo data that profile regulatory machinery at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to data profiling Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaquan Liu ◽  
Ryanggeun Lee ◽  
Brooke M. Britton ◽  
James A. London ◽  
Keunsang Yang ◽  
...  

AbstractA shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions.


mSystems ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
David Bergenholm ◽  
Guodong Liu ◽  
Petter Holland ◽  
Jens Nielsen

ABSTRACT To build transcription regulatory networks, transcription factor binding must be analyzed in cells grown under different conditions because their responses and targets differ depending on environmental conditions. We performed whole-genome analysis of the DNA binding of five Saccharomyces cerevisiae transcription factors involved in lipid metabolism, Ino2, Ino4, Hap1, Oaf1, and Pip2, in response to four different environmental conditions in chemostat cultures, which allowed us to keep the specific growth rate constant. Chromatin immunoprecipitation with lambda exonuclease digestion (ChIP-exo) enabled the detection of binding events at a high resolution. We discovered a large number of unidentified targets and thus expanded functions for each transcription factor (e.g., glutamate biosynthesis as a target of Oaf1 and Pip2). Moreover, condition-dependent binding of transcription factors in response to cell metabolic state (e.g., differential binding of Ino2 between fermentative and respiratory metabolic conditions) was clearly suggested. Combining the new binding data with previously published data from transcription factor deletion studies revealed the high complexity of the transcriptional regulatory network for lipid metabolism in yeast, which involves the combinatorial and complementary regulation by multiple transcription factors. We anticipate that our work will provide insights into transcription factor binding dynamics that will prove useful for the understanding of transcription regulatory networks. IMPORTANCE Transcription factors play a crucial role in the regulation of gene expression and adaptation to different environments. To better understand the underlying roles of these adaptations, we performed experiments that give us high-resolution binding of transcription factors to their targets. We investigated five transcription factors involved in lipid metabolism in yeast, and we discovered multiple novel targets and condition-specific responses that allow us to draw a better regulatory map of the lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document