Stochastic resonance without external periodic force

1993 ◽  
Vol 71 (6) ◽  
pp. 807-810 ◽  
Author(s):  
Hu Gang ◽  
T. Ditzinger ◽  
C. Z. Ning ◽  
H. Haken
Author(s):  
Ruoxing Mei ◽  
Yong Xu ◽  
Yongge Li ◽  
Jürgen Kurths

Many biological systems possess confined structures, which produce novel influences on the dynamics. Here, stochastic resonance (SR) in a triple cavity that consists of three units and is subjected to noise, periodic force and vertical constance force is studied, by calculating the spectral amplification η numerically. Meanwhile, SR in the given triple cavity and differences from other structures are explored. First, it is found that the cavity parameters can eliminate or regulate the maximum of η and the noise intensity that induces this maximum. Second, compared to a double cavity with similar maximum/minimum widths and distances between two maximum widths as the triple cavity, η in the triple one shows a larger maximum. Next, the conversion of the natural boundary in the pure potential to the reflection boundary in the triple cavity will create the necessity of a vertical force to induce SR and lead to a decrease in the maximum of η . In addition, η monotonically decreases with the increase of the vertical force and frequency of the periodic force, while it presents several trends when increasing the periodic force’s amplitude for different noise intensities. Finally, our studies are extended to the impact of fractional Gaussian noise excitations. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 2)’.


2015 ◽  
Vol 60 (5) ◽  
pp. 314-320 ◽  
Author(s):  
Kimihiko Nakano ◽  
Matthew P. Cartmell ◽  
Honggang Hu ◽  
Rencheng Zheng

Author(s):  
L. C. Du ◽  
W. H. Yue ◽  
J. H. Jiang ◽  
L. L. Yang ◽  
M. M. Ge

The phenomenon of entropic stochastic resonance (ESR) is investigated with the presence of a time-periodic force in the transverse direction. Simulation results manifest that the ESR can survive even if there is no static bias force in any direction, just if a transverse driving field is applied. In the weak noise region, the transverse driving force leads to a giant-suppression of the escape rate from one well to another, i.e. the entropic trapping. The increase in noise intensity will eliminate this suppression and induce the ESR phenomenon. An alternative quantity, called the mean free flying time, is also proposed to characterize the ESR as well as the conventional spectral power amplification. The ESR can be modulated conveniently by the transverse periodic force, which implies an alternative method for controlling the dynamics of small-scale systems. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 2)’.


2014 ◽  
Vol 617 ◽  
pp. 285-290
Author(s):  
Stanislav Pospíšil ◽  
Jiří Náprstek

We study the response of a dynamic system to additive random noise and external determin- istic periodic force to investigate vibration of a slender prismatic beam in a cross flow with a turbulence component. The aim of the study is to find such parameter combinations, which should be avoided in practice to eliminate response amplitude increase due to the effect of the stochastic resonance. We assume the non-linear oscillator (beam) with one generalized degree of freedom in the divergence-like regime. It is described by the version of the Duffing equation. We conduct the theoretical investigation with the use of relevant Fokker-Planck equation together with verification by numerical simulation of corresponding stochastic differential system. Real characteristics of a sectional model, fixed in the special stand allowing the snap-through effect, in the wind tunnel are employed.


Sign in / Sign up

Export Citation Format

Share Document