Low-Temperature Thermodynamic and Thermal-Transport Properties of Decagonal Al65Cu20Co15

1996 ◽  
Vol 77 (6) ◽  
pp. 1071-1074 ◽  
Author(s):  
K. Edagawa ◽  
M. A. Chernikov ◽  
A. D. Bianchi ◽  
E. Felder ◽  
U. Gubler ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Changning Pan ◽  
Jun He ◽  
Diwu Yang ◽  
Keqiu Chen

Ballistic thermal transport properties are investigated comparatively for out-of-plane phonon modes (FPMs) and in-plane phonon modes (IPMs) in bended graphene nanoribbons (GNRs). Results show that the phonon modes transports can be modulated separately by the phonon dispersion mismatch between armchair and zigzag GNRs in considered system. The contribution of FPMs to total thermal conductance is larger than 50% in low temperature for perfect GNRs. But it becomes less than 20% in the bended GNRs. Furthermore, this contribution can be modulated by changing the structural parameters of the bended GNRs. The result is useful for the design of thermal or thermoelectric nanodevices in future.


2011 ◽  
Vol 320 ◽  
pp. 38-44 ◽  
Author(s):  
Qing Yuan Meng ◽  
Yu Fei Gao ◽  
Xian Qin

Carbon nanotubes (CNTs) is a well thermal transport nano materials, however, the thermal conductivity of CNTs has not been well established, only a few groups had reported experimental data and the existed simulation results ranged widely. Specially, the conclusions in low temperature section and dynamic structures were not very clearly. In this paper, the methods based on phonon scattering theory were applied to explore the thermal transport properties CNTs. The investigation was carried out under the conditions of temperature and axial strain. In the consideration of quantum effect, the thermal conductivity increased linearly with the growth of temperature in low-temperature section, and began to decrease gradually when the temperature exceeded a definite value. If an axial strain was concerned, there was an increasing trend of thermal conductivity as the stretch strain increases. However, after the strain exceeded a particular value the thermal conductivity decreased significantly. In addition, the high frequency phonon peak in PDOS was found to be an important parameter in describing thermal transport properties of dynamic structures.


2018 ◽  
Author(s):  
Xiaoxiang Yu ◽  
Ruiyang Li ◽  
Takuma Shiga ◽  
Lei Feng ◽  
Junichiro Shiomi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document