thermal conductance
Recently Published Documents


TOTAL DOCUMENTS

1345
(FIVE YEARS 248)

H-INDEX

69
(FIVE YEARS 9)

Author(s):  
Shanchen Li ◽  
Yang Chen ◽  
Zhihui Li ◽  
Junhua Zhao ◽  
Ning Wei

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Md. Sherajul Islam ◽  
Imon Mia ◽  
A. S. M. Jannatul Islam ◽  
Catherine Stampfl ◽  
Jeongwon Park

AbstractGraphene based two-dimensional (2D) van der Waals (vdW) materials have attracted enormous attention because of their extraordinary physical properties. In this study, we explore the temperature and interlayer coupling induced thermal transport across the graphene/2D-SiC vdW interface using non-equilibrium molecular dynamics and transient pump probe methods. We find that the in-plane thermal conductivity κ deviates slightly from the 1/T law at high temperatures. A tunable κ is found with the variation of the interlayer coupling strength χ. The interlayer thermal resistance R across graphene/2D-SiC interface reaches 2.71 $$\times$$ × 10–7$${\text{Km}}^{2} /{\text{W}}$$ Km 2 / W at room temperature and χ = 1, and it reduces steadily with the elevation of system temperature and χ, demonstrating around 41% and 56% reduction with increasing temperature to 700 K and a χ of 25, respectively. We also elucidate the heat transport mechanism by estimating the in-plane and out-of-plane phonon modes. Higher phonon propagation possibility and Umklapp scattering across the interface at high temperatures and increased χ lead to the significant reduction of R. This work unveils the mechanism of heat transfer and interface thermal conductance engineering across the graphene/2D-SiC vdW heterostructure.


2022 ◽  
Author(s):  
Blake Wilson ◽  
Steven Nielsen ◽  
Jaona Randrianalisoa ◽  
Zhenpeng Qin

Plasmonic gold nanoparticles (AuNPs) can convert laser irradiation into thermal energy and act as nano heaters in avariety of applications. Although the AuNP-water interface is an essential part of the plasmonic heating process,there is a lack of mechanistic understanding of how interface curvature and the heating itself impact interfacial heattransfer. Here, we report atomistic molecular dynamics simulations that investigate heat transfer through nanoscalegold-water interfaces. We confirmed that interfacial heat transfer is an important part of AuNP heat dissipation inAuNPs with diameter less than 100 nm, particularly for small particles with diameter≤10 nm. To account forvariations in the gold-water interaction strength reported in the literature, and to implicitly account for differentsurface functionalizations, we modeled a moderate and a poor AuNP-water wetting scenario. We found that thethermal interface conductance increases linearly with interface curvature regardless of the gold wettability, while itincreases non-linearly, or remains constant, with the applied heat flux under different wetting conditions. Our analysissuggests the curvature dependence of the interface conductance is due to the changes in interfacial water adsorption,while the temperature dependence is caused by heat-induced shifts in the distribution of water vibrational states.Our study advances the current understanding of interface thermal conductance for a broad range of applications.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Masayuki Morimoto ◽  
Shoya Kawano ◽  
Shotaro Miyamoto ◽  
Koji Miyazaki ◽  
Shuzi Hayase ◽  
...  

AbstractTo develop high-performance thermoelectric devices that can be created using printing technology, the interface of a composite material composed of MASnI3 and Bi2Te3, which individually show excellent thermoelectric performance, was studied based on first-principles calculations. The structural stability, electronic state, and interfacial thermal conductance of the interface between Bi2Te3 and MASnI3 were evaluated. Among the interface structure models, we found stable interface structures and revealed their specific electronic states. Around the Fermi energy, the interface structures with TeII and Bi terminations exhibited interface levels attributed to the overlapping electron densities for Bi2Te3 and MASnI3 at the interface. Calculation of the interfacial thermal conductance using the diffuse mismatch model suggested that construction of the interface between Bi2Te3 and MASnI3 could reduce the thermal conductivity. The obtained value was similar to the experimental value for the inorganic/organic interface.


Author(s):  
Serafeim Bakalakos ◽  
Ioannis Kalogeris ◽  
Vissarion Papadopoulos ◽  
Manolis Papadrakakis ◽  
Panagiotis Maroulas ◽  
...  

Abstract The present paper investigates the thermal properties of carbon nanotube reinforced polyethylene and specifically its potential as highly conductive material. To this end, an integrated approach is proposed combining both numerical and experimental procedures. First, in order to study conductive heat transfer in two-phase materials with imperfect interfaces, a detailed numerical model is developed based on the extended finite element method (XFEM), where material interfaces are modeled using the level set method. The thermal conductance at the interface of the carbon nanotubes and the polymer matrix is considered to be an unknown model parameter, the value of which is obtained by utilizing a series of experimental measurements of the composite material’s effective conductivity. The interfacial thermal conductance parameter value is inferred by calibrating the numerically predicted effective conductivity to the series of the corresponding experimental measurements. Once this parameter is estimated, the data-informed model is subsequently employed to provide reliable predictions of the effective conductivity of the composite for various weight fractions and configurations of carbon nanotubes in the parent material. Furthermore, microstructural morphologies that provide upper limits on the effective conductivity of the composite are identified via sensitivity analysis, demonstrating its potential as a highly conductive material.


2022 ◽  
Vol 71 (2) ◽  
pp. 027803-027803
Author(s):  
Wu Cheng-Wei ◽  
◽  
Ren Xue ◽  
Zhou Wu-Xing ◽  
Xie Guo-Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document