phonon scattering
Recently Published Documents


TOTAL DOCUMENTS

2216
(FIVE YEARS 353)

H-INDEX

83
(FIVE YEARS 10)

Author(s):  
Shravan Godse ◽  
Yagyank Srivastava ◽  
Ankit Jain

Abstract The anharmonic phonon properties of type-I filled inorganic clathrates Ba8Ga16Ge30 and Sr8Ga16Ge30 are obtained from the first-principles calculations by considering the temperature-dependent sampling of the potential energy surface and quartic phonon renormalization. Owing to the weak binding of guest atoms with the host lattice, the obtained guest modes undergo strong renormalization with temperature and become stiffer by up to 50% at room temperature in Sr8Ga16Ge30. The calculated phonon frequencies and associated thermal mean squared displace- ments are comparable with experiments despite the on-centering of guest atoms at cage centers in both clathrates. Lattice thermal conductivities are obtained in the temperature range of 50- 300 K accounting for three-phonon scattering processes and multi-channel thermal transport. The contribution of coherent transport channel is significant at room temperature (13% and 22% in Ba8Ga16Ge30 and Sr8Ga16Ge30) but is insufficient to explain the experimentally observed glass-like thermal transport in Sr8Ga16Ge30.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianju Zhang ◽  
Chaocheng Zhou ◽  
Xuezhen Feng ◽  
Ningning Dong ◽  
Hong Chen ◽  
...  

AbstractTwo-dimensional (2D) Sn-based perovskites are a kind of non-toxic environment-friendly luminescent material. However, the research on the luminescence mechanism of this type of perovskite is still very controversial, which greatly limits the further improvement and application of the luminescence performance. At present, the focus of controversy is defects and phonon scattering rates. In this work, we combine the organic cation control engineering with temperature-dependent transient absorption spectroscopy to systematically study the interband exciton relaxation pathways in layered A2SnI4 (A = PEA+, BA+, HA+, and OA+) structures. It is revealed that exciton-phonon scattering and exciton-defect scattering have different effects on exciton relaxation. Our study further confirms that the deformation potential scattering by charged defects, not by the non-polar optical phonons, dominates the excitons interband relaxation, which is largely different from the Pb-based perovskites. These results enhance the understanding of the origin of the non-radiative pathway in Sn-based perovskite materials.


2022 ◽  
Vol 1048 ◽  
pp. 205-211
Author(s):  
Hoang Van Ngoc

Conductivity tensor is an important concept in materials, this work studies conductivity tensors in cylindrical quantum wires with parabolic potential in the presence of two external fields, a linearly polarized electromagnetic wave, and a laser field. This work is also only considered for the case of electron-acoustic phonon scattering. Research results are obtained by using quantum kinetic equations for the carrier system in a quantum wire. The conductivity tensor is calculated by solving the quantum kinetic equation of the system, which is a function of the external field frequency, the external field amplitude, the temperature of the helium, and parameters specific to the quantum wire. Results will also be examined and plotted for quantum wire GaAs / GaAsAl.


Author(s):  
Gui-Cang He ◽  
Lina Shi ◽  
Yilei Hua ◽  
Xiao-Li Zhu

In this work, the electron-phonon, the phonon-phonon, and phonon structure scattering mechanisms and the effect on the thermal and thermoelectric properties of the silver nanowire (AgNW) are investigated in temperature...


2022 ◽  
Vol 270 ◽  
pp. 108179
Author(s):  
Zherui Han ◽  
Xiaolong Yang ◽  
Wu Li ◽  
Tianli Feng ◽  
Xiulin Ruan

2022 ◽  
Vol 2150 (1) ◽  
pp. 012021
Author(s):  
A A Barinov ◽  
B Liu ◽  
V I Khvesyuk

Abstract Scattering processes at interfaces and free boundaries of solids strongly affect heat transfer in micro- and nanostructures such as integrated circuits, periodic nanostructures, multilayer thin films, and other nanomaterials. Among many influencing factors, surface roughness due to atomic disorder plays a significant role in the rate of thermal transport. Existing approaches have been developed only for the limiting cases of smooth or completely diffuse surfaces. We have developed a new effective and simple method based on a direct consideration of the scattering of elastic waves from a statistically random profile (using a normal Gaussian surface as an example). This approach, first, allows to generalize common methods for determining the thermal properties of a real random rough surface using simple modifications, and, second, provides a tool for calculating the Kapitza conductance and the effective longitudinal thermal conductivity and studying the influence of roughness on heat transfer.


Author(s):  
Masanori Endo ◽  
Haruki Uchiyama ◽  
Yutaka Ohno ◽  
Jun Hirotani

Abstract Raman scatterings of both pristine and defective single-walled carbon nanotubes were measured. Defects on carbon nanotubes (CNTs) were induced by UV/O3 treatment, and the correlation between the temperature dependence of the Raman shift of the G-band and the crystallinity of CNTs was investigated. In the temperature range of 250–600 K, a gradual negative change in the slope was observed; the linear shift of the Raman G-band frequency with respect to temperature increased as the crystallinity deteriorated. This phenomenon is attributed to the increase in the fourth-order phonon-phonon scattering interaction resulting from the induced defects.


Sign in / Sign up

Export Citation Format

Share Document