scholarly journals Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle

2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Junyeong Ahn ◽  
Sungjoon Park ◽  
Bohm-Jung Yang
2017 ◽  
Vol 119 (22) ◽  
Author(s):  
Jimin Kim ◽  
Seung Su Baik ◽  
Sung Won Jung ◽  
Yeongsup Sohn ◽  
Sae Hee Ryu ◽  
...  

2021 ◽  
Vol 118 (30) ◽  
pp. e2100006118
Author(s):  
Xiaobo Lu ◽  
Biao Lian ◽  
Gaurav Chaudhary ◽  
Benjamin A. Piot ◽  
Giulio Romagnoli ◽  
...  

Moiré superlattices in two-dimensional van der Waals heterostructures provide an efficient way to engineer electron band properties. The recent discovery of exotic quantum phases and their interplay in twisted bilayer graphene (tBLG) has made this moiré system one of the most renowned condensed matter platforms. So far studies of tBLG have been mostly focused on the lowest two flat moiré bands at the first magic angle θm1 ∼ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic angle θm2 ∼ 0.5°, which cannot be explained without considering electron–election interactions. With high magnetic field magnetotransport measurements we further reveal an energetically unbound Hofstadter butterfly spectrum in which continuously extended quantized Landau level gaps cross all trivial band gaps. The connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the multiple moiré bands. Overall, our work provides a perspective for understanding the quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Yu-ichiro Matsushita ◽  
Hirofumi Nishi ◽  
Jun-ichi Iwata ◽  
Taichi Kosugi ◽  
Atsushi Oshiyama

Author(s):  
Folkert K. de Vries ◽  
Elías Portolés ◽  
Giulia Zheng ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

Author(s):  
Artur Durajski ◽  
Kamil Skoczylas ◽  
Radoslaw Szczesniak

Superconductivity attracts much interest in two-dimensional compounds due to their potential application in nano-superconducting devices. Inspired by a recent experiment reporting the superconducting state in twisted bilayer graphene, here, based...


2D Materials ◽  
2022 ◽  
Author(s):  
Tiago Campolina Barbosa ◽  
Andreij C. Gadelha ◽  
Douglas A. A. Ohlberg ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

Abstract In this work, we study the Raman spectra of twisted bilayer graphene samples as a function of their twist-angles (θ), ranging from 0.03º to 3.40º, where local θ are determined by analysis of their associated moiré superlattices, as imaged by scanning microwave impedance microscopy. Three standard excitation laser lines are used (457, 532, and 633 nm wavelengths), and the main Raman active graphene bands (G and 2D) are considered. Our results reveal that electron-phonon interaction influences the G band's linewidth close to the magic angle regardless of laser excitation wavelength. Also, the 2D band lineshape in the θ < 1º regime is dictated by crystal lattice and depends on both the Bernal (AB and BA) stacking bilayer graphene and strain soliton regions (SP) [1]. We propose a geometrical model to explain the 2D lineshape variations, and from it, we estimate the SP width when moving towards the magic angle.


Sign in / Sign up

Export Citation Format

Share Document