Multiple small-angle scattering from a statistical medium

1992 ◽  
Vol 25 (2) ◽  
pp. 221-230 ◽  
Author(s):  
S. Mazumder ◽  
A. Sequeira

A generalized formalism on multiple small-angle scattering is proposed to investigate the nature of the extractable structural information on inhomogeneities from the multiple-scattering profile. It is found that the statistical nature of the medium can broaden as well as narrow the scattering profile depending upon the characteristics of the medium. The nature and the extent of the effect of the various approximations on analysing the multiple-scattering data are discussed.

2014 ◽  
Vol 70 (2) ◽  
pp. 371-383 ◽  
Author(s):  
Søren A. R. Kynde ◽  
Nicholas Skar-Gislinge ◽  
Martin Cramer Pedersen ◽  
Søren Roi Midtgaard ◽  
Jens Baek Simonsen ◽  
...  

Monomeric bacteriorhodopsin (bR) reconstituted into POPC/POPG-containing nanodiscs was investigated by combined small-angle neutron and X-ray scattering. A novel hybrid approach to small-angle scattering data analysis was developed. In combination, these provided direct structural insight into membrane-protein localization in the nanodisc and into the protein–lipid interactions. It was found that bR is laterally decentred in the plane of the disc and is slightly tilted in the phospholipid bilayer. The thickness of the bilayer is reduced in response to the incorporation of bR. The observed tilt of bR is in good accordance with previously performed theoretical predictions and computer simulations based on the bR crystal structure. The result is a significant and essential step on the way to developing a general small-angle scattering-based method for determining the low-resolution structures of membrane proteins in physiologically relevant environments.


1994 ◽  
Vol 376 ◽  
Author(s):  
T.M. Sabine ◽  
W.K. Bertram ◽  
L.P. Aldridge

ABSTRACTSmall angle scattering data are traditionally interpreted in terms of scattering patterns at the Porod and the Guinier limits. It is difficult to fit the entire scattering pattern to account for scattering from spheres because Rayleigh's formula contains oscillatory terms which are smeared out in practice by perturbations in the sizes of the scattering agents.It is proposed that a Lorenztian type function be used instead of Rayleigh's function. By using this equation it is possible to fit the entire small angle scattering pattern and obtain the correct forms of the Guinier and Porod limits.The effects of correlation and multiple scattering are also explored.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Amirsaman Rezaeyan ◽  
Vitaliy Pipich ◽  
Andreas Busch

MATSAS is a script-based MATLAB program for analysis of X-ray and neutron small-angle scattering (SAS) data obtained from various facilities. The program has primarily been developed for sedimentary rock samples but is equally applicable to other porous media. MATSAS imports raw SAS data from .xls(x) or .csv files, combines small-angle and very small angle scattering data, subtracts the sample background, and displays the processed scattering curves in log–log plots. MATSAS uses the polydisperse spherical (PDSP) model to obtain structural information on the scatterers (scattering objects); for a porous system, the results include specific surface area (SSA), porosity (Φ), and differential and logarithmic differential pore area/volume distributions. In addition, pore and surface fractal dimensions (D p and D s, respectively) are obtained from the scattering profiles. The program package allows simultaneous and rapid analysis of a batch of samples, and the results are then exported to .xlsx and .csv files with separate spreadsheets for individual samples. MATSAS is the first SAS program that delivers a full suite of pore characterizations for sedimentary rocks. MATSAS is an open-source package and is freely available at GitHub (https://github.com/matsas-software/MATSAS).


2017 ◽  
Vol 73 (9) ◽  
pp. 710-728 ◽  
Author(s):  
Jill Trewhella ◽  
Anthony P. Duff ◽  
Dominique Durand ◽  
Frank Gabel ◽  
J. Mitchell Guss ◽  
...  

In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.


1983 ◽  
Vol 16 (1) ◽  
pp. 42-46 ◽  
Author(s):  
O. Glatter ◽  
P. Laggner

The possibilities of obtaining structural information from X-ray small-angle scattering experiments with `white' polychromatic synchrotron radiation using line collimation are investigated by numerical simulation. Theoretical scattering curves of geometrical models were smeared with the appropriate wavelength distributions and slit-length functions, afflicted by statistical noise, and then evaluated by identical methods as normally used for experimental data, as described previously [program ITP; Glatter (1977). J. Appl. Cryst. 10, 415–421]. It is shown that even for a wavelength distribution of 50% half width, the information content is not limited to the parameters derived from the central part of the scattering curves, i.e. the radius of gyration and the zero-angle intensity, but also allows qualitative information on particle shape via the distance distribution function p(r). By a `hinge-bending model' consisting of two cylinders linked together at different angles it is demonstrated that changes in the radius of gyration amounting to less than 5% can be detected and quantified, and the qualitative changes in particle shape be reproduced.


Sign in / Sign up

Export Citation Format

Share Document