Structure and evolution of the spliceosomal peptidyl-prolylcis–transisomerase Cwc27

2014 ◽  
Vol 70 (12) ◽  
pp. 3110-3123 ◽  
Author(s):  
Alexander Ulrich ◽  
Markus C. Wahl

Cwc27 is a spliceosomal cyclophilin-type peptidyl-prolylcis–transisomerase (PPIase). Here, the crystal structure of a relatively protease-resistant N-terminal fragment of human Cwc27 containing the PPIase domain was determined at 2.0 Å resolution. The fragment exhibits a C-terminal appendix and resides in a reduced state compared with the previous oxidized structure of a similar fragment. By combining multiple sequence alignments spanning the eukaryotic tree of life and secondary-structure prediction, Cwc27 proteins across the entire eukaryotic kingdom were identified. This analysis revealed the specific loss of a crucial active-site residue in higher eukaryotic Cwc27 proteins, suggesting that the protein evolved from a prolyl isomerase to a pure proline binder. Noting a fungus-specific insertion in the PPIase domain, the 1.3 Å resolution crystal structure of the PPIase domain of Cwc27 fromChaetomium thermophilumwas also determined. Although structurally highly similar in the core domain, theC. thermophilumprotein displayed a higher thermal stability than its human counterpart, presumably owing to the combined effect of several amino-acid exchanges that reduce the number of long side chains with strained conformations and create new intramolecular interactions, in particular increased hydrogen-bond networks.

Author(s):  
Fabian Sievers ◽  
Desmond G Higgins

Abstract Motivation Secondary structure prediction accuracy (SSPA) in the QuanTest benchmark can be used to measure accuracy of a multiple sequence alignment. SSPA correlates well with the sum-of-pairs score, if the results are averaged over many alignments but not on an alignment-by-alignment basis. This is due to a sub-optimal selection of reference and non-reference sequences in QuanTest. Results We develop an improved strategy for selecting reference and non-reference sequences for a new benchmark, QuanTest2. In QuanTest2, SSPA and SP correlate better on an alignment-by-alignment basis than in QuanTest. Guide-trees for QuanTest2 are more balanced with respect to reference sequences than in QuanTest. QuanTest2 scores correlate well with other well-established benchmarks. Availability and implementation QuanTest2 is available at http://bioinf.ucd.ie/quantest2.tar, comprises of reference and non-reference sequence sets and a scoring script. Supplementary information Supplementary data are available at Bioinformatics online


2020 ◽  
Author(s):  
Aashish Jain ◽  
Genki Terashi ◽  
Yuki Kagaya ◽  
Sai Raghavendra Maddhuri Venkata Subramaniya ◽  
Charles Christoffer ◽  
...  

ABSTRACTProtein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA’s feature at the inter-residue level, we added an attention layer to the deep neural network. The model is trained in a multi-task fashion to also predict backbone and orientation angles further improving the inter-residue distance prediction. We show that AttentiveDist outperforms the top methods for contact prediction in the CASP13 structure prediction competition. To aid in structure modeling we also developed two new deep learning-based sidechain center distance and peptide-bond nitrogen-oxygen distance prediction models. Together these led to a 12% increase in TM-score from the best server method in CASP13 for structure prediction.


Author(s):  
Grey W. Wilburn ◽  
Sean R. Eddy

AbstractMost methods for biological sequence homology search and alignment work with primary sequence alone, neglecting higher-order correlations. Recently, statistical physics models called Potts models have been used to infer all-by-all pairwise correlations between sites in deep multiple sequence alignments, and these pairwise couplings have improved 3D structure predictions. Here we extend the use of Potts models from structure prediction to sequence alignment and homology search by developing what we call a hidden Potts model (HPM) that merges a Potts emission process to a generative probability model of insertion and deletion. Because an HPM is incompatible with efficient dynamic programming alignment algorithms, we develop an approximate algorithm based on importance sampling, using simpler probabilistic models as proposal distributions. We test an HPM implementation on RNA structure homology search benchmarks, where we can compare directly to exact alignment methods that capture nested RNA base-pairing correlations (stochastic context-free grammars). HPMs perform promisingly in these proof of principle experiments.Author summaryComputational homology search and alignment tools are used to infer the functions and evolutionary histories of biological sequences. Most widely used tools for sequence homology searches, such as BLAST and HMMER, rely on primary sequence conservation alone. It should be possible to make more powerful search tools by also considering higher-order covariation patterns induced by 3D structure conservation. Recent advances in 3D protein structure prediction have used a class of statistical physics models called Potts models to infer pairwise correlation structure in multiple sequence alignments. However, Potts models assume alignments are given and cannot build new alignments, limiting their use in homology search. We have extended Potts models to include a probability model of insertion and deletion so they can be applied to sequence alignment and remote homology search using a new model we call a hidden Potts model (HPM). Tests of our prototype HPM software show promising results in initial benchmarking experiments, though more work will be needed to use HPMs in practical tools.


2021 ◽  
Author(s):  
Allan Costa ◽  
Manvitha Ponnapati ◽  
Joseph M Jacobson ◽  
Pranam Chatterjee

Determining the structure of proteins has been a long-standing goal in biology. Language models have been recently deployed to capture the evolutionary semantics of protein sequences. Enriched with multiple sequence alignments (MSA), these models can encode protein tertiary structure. In this work, we introduce an attention-based graph architecture that exploits MSA Transformer embeddings to directly produce three-dimensional folded structures from protein sequences. We envision that this pipeline will provide a basis for efficient, end-to-end protein structure prediction.


Sign in / Sign up

Export Citation Format

Share Document