potts models
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 28)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francisco McGee ◽  
Sandro Hauri ◽  
Quentin Novinger ◽  
Slobodan Vucetic ◽  
Ronald M. Levy ◽  
...  

AbstractPotts models and variational autoencoders (VAEs) have recently gained popularity as generative protein sequence models (GPSMs) to explore fitness landscapes and predict mutation effects. Despite encouraging results, current model evaluation metrics leave unclear whether GPSMs faithfully reproduce the complex multi-residue mutational patterns observed in natural sequences due to epistasis. Here, we develop a set of sequence statistics to assess the “generative capacity” of three current GPSMs: the pairwise Potts Hamiltonian, the VAE, and the site-independent model. We show that the Potts model’s generative capacity is largest, as the higher-order mutational statistics generated by the model agree with those observed for natural sequences, while the VAE’s lies between the Potts and site-independent models. Importantly, our work provides a new framework for evaluating and interpreting GPSM accuracy which emphasizes the role of higher-order covariation and epistasis, with broader implications for probabilistic sequence models in general.


2021 ◽  
pp. 1-25
Author(s):  
OTABEK KHAKIMOV ◽  
FARRUKH MUKHAMEDOV

Abstract The renormalization group method has been developed to investigate p-adic q-state Potts models on the Cayley tree of order k. This method is closely related to the examination of dynamical behavior of the p-adic Potts–Bethe mapping which depends on the parameters q, k. In Mukhamedov and Khakimov [Chaotic behavior of the p-adic Potts–Behte mapping. Discrete Contin. Dyn. Syst.38 (2018), 231–245], we have considered the case when q is not divisible by p and, under some conditions, it was established that the mapping is conjugate to the full shift on $\kappa _p$ symbols (here $\kappa _p$ is the greatest common factor of k and $p-1$ ). The present paper is a continuation of the forementioned paper, but here we investigate the case when q is divisible by p and k is arbitrary. We are able to fully describe the dynamical behavior of the p-adic Potts–Bethe mapping by means of a Markov partition. Moreover, the existence of a Julia set is established, over which the mapping exhibits a chaotic behavior. We point out that a similar result is not known in the case of real numbers (with rigorous proofs).


Author(s):  
A. K. Murtazaev ◽  
A. B. Babaev ◽  
G. Ya. Ataeva ◽  
A. A. Murtazaeva

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hugo Talibart ◽  
François Coste

Abstract Background To assign structural and functional annotations to the ever increasing amount of sequenced proteins, the main approach relies on sequence-based homology search methods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov Models, which rely on significant alignments of query sequences to annotated proteins or protein families. While powerful, these approaches do not take coevolution between residues into account. Taking advantage of recent advances in the field of contact prediction, we propose here to represent proteins by Potts models, which model direct couplings between positions in addition to positional composition, and to compare proteins by aligning these models. Due to non-local dependencies, the problem of aligning Potts models is hard and remains the main computational bottleneck for their use. Methods We introduce here an Integer Linear Programming formulation of the problem and PPalign, a program based on this formulation, to compute the optimal pairwise alignment of Potts models representing proteins in tractable time. The approach is assessed with respect to a non-redundant set of reference pairwise sequence alignments from SISYPHUS benchmark which have lowest sequence identity (between $$3\%$$ 3 % and $$20\%$$ 20 % ) and enable to build reliable Potts models for each sequence to be aligned. This experimentation confirms that Potts models can be aligned in reasonable time ($$1'37''$$ 1 ′ 37 ′ ′ in average on these alignments). The contribution of couplings is evaluated in comparison with HHalign and independent-site PPalign. Although Potts models were not fully optimized for alignment purposes and simple gap scores were used, PPalign yields a better mean $$F_1$$ F 1 score and finds significantly better alignments than HHalign and PPalign without couplings in some cases. Conclusions These results show that pairwise couplings from protein Potts models can be used to improve the alignment of remotely related protein sequences in tractable time. Our experimentation suggests yet that new research on the inference of Potts models is now needed to make them more comparable and suitable for homology search. We think that PPalign’s guaranteed optimality will be a powerful asset to perform unbiased investigations in this direction.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Ville Lahtinen ◽  
Teresia Mansson ◽  
Eddy Ardonne

We construct local generalizations of 3-state Potts models with exotic critical points. We analytically show that these are described by non-diagonal modular invariant partition functions of products of Z_3Z3 parafermion or u(1)_6u(1)6 conformal field theories (CFTs). These correspond either to non-trivial permutation invariants or block diagonal invariants, that one can understand in terms of anyon condensation. In terms of lattice parafermion operators, the constructed models correspond to parafermion chains with many-body terms. Our construction is based on how the partition function of a CFT depends on symmetry sectors and boundary conditions. This enables to write the partition function corresponding to one modular invariant as a linear combination of another over different sectors and boundary conditions, which translates to a general recipe how to write down a microscopic model, tuned to criticality. We show that the scheme can also be extended to construct critical generalizations of kk-state clock type models.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Rongvoram Nivesvivat ◽  
Sylvain Ribault

Using derivatives of primary fields (null or not) with respect to the conformal dimension, we build infinite families of non-trivial logarithmic representations of the conformal algebra at generic central charge, with Jordan blocks of dimension 2 or 3. Each representation comes with one free parameter, which takes fixed values under assumptions on the existence of degenerate fields. This parameter can be viewed as a simpler, normalization-independent redefinition of the logarithmic coupling. We compute the corresponding non-chiral conformal blocks, and show that they appear in limits of Liouville theory four-point functions.As an application, we describe the logarithmic structures of the critical two-dimensional O(n) and Q-state Potts models at generic central charge. The validity of our description is demonstrated by semi-analytically bootstrapping four-point connectivities in the Q-state Potts model to arbitrary precision. Moreover, we provide numerical evidence for the Delfino-Viti conjecture for the three-point connectivity. Our results hold for generic values of Q in the complex plane and beyond.


2021 ◽  
Vol 43 (2) ◽  
pp. B455-B478
Author(s):  
Hongpeng Sun ◽  
Xue-Cheng Tai ◽  
Jing Yuan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document