scholarly journals 2-((E)-{[4-(Hydroxymethyl)phenyl]imino}methyl)phenol

2012 ◽  
Vol 68 (6) ◽  
pp. o1618-o1618 ◽  
Author(s):  
Shaaban K. Mohamed ◽  
Antar A. Abdelhamid ◽  
Mehmet Akkurt ◽  
Phillip E. Fanwick ◽  
A. M. Maharramov

The title compound, C14H13NO2, adopts the enol–imine tautomeric form, with an intramolecular O—H...N hydrogen bond which generates an S(6) ring motif. The dihedral angle between the aromatic rings is 7.85 (7)°. The crystal structure is stabilized by O—H...O, O—H...N and C—H...O hydrogen bonds, forming a two-dimensional array that stacks along the a axis. In addition, a C—H...π interaction contributes to the stabilization of the crystal packing.

Author(s):  
Cong Nguyen Tien ◽  
Huong Le Thi Thu ◽  
Thin Nguyen Van ◽  
Trung Vu Quoc ◽  
Manh Vu Quoc ◽  
...  

In the title compound, C15H14IN3O2·CH3OH, two aromatic rings are linked by an N-substituted hydrazide function. The dihedral angle between the aromatic rings is 10.53 (8)°. The stereochemistry about the imine function is E. The methanol molecule forms an O—H...O hydrogen bond to the hydrazide O atom. In the crystal, chains of molecules running along the c-axis direction are formed by O—H...O hydrogen bonds. Adjacent chains are linked through N—H...O hydrogen bonds and π–π stacking interactions. The intermolecular interactions in the crystal packing were investigated using Hirshfeld surface analysis, which indicated that the most significant contacts are H...H (38.2%), followed by C...H/H...C (20.6%), O...H/H...O (11.1%) and I...H/H...I (9.7%).


Author(s):  
Inna S. Safyanova ◽  
Kateryna A. Ohui ◽  
Iryna V. Omelchenko ◽  
Svitlana V. Shyshkina

The title compound, C10H8N2O2·H2O, consists of anN-hydroxyquinoline-2-carboxamide molecule in the keto tautomeric form and a water molecule connected through an O—H...O hydrogen bond. TheN-hydroxyquinoline-2-carboxamide molecule has a nearly planar structure [maximum deviation = 0.062 (1) Å] and only the hydroxy H atom deviates significantly from the molecule plane. In the crystal, π–π stacking between the aromatic rings [intercentroid distance = 3.887 (1) Å] and intermolecular O—H...O hydrogen bonds organize the crystal components into columns extending along theb-axis direction.


2018 ◽  
Vol 74 (8) ◽  
pp. 1147-1150 ◽  
Author(s):  
Pinar Sen ◽  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The title compound, C26H36N2O2, crystallizes in the phenol–imine form. In the molecule, there are intramolecular O—H...N hydrogen bonds forming S(6) ring motifs, and the two aromatic rings are inclined to each other by 37.9 (7)°. In the crystal, molecules are linked by pairs of weak C—H...O hydrogen bonds, forming inversion dimers. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (77.5%), H...C/C...H (16%), H...O/O...H (3.1%) and H...N/N...H (1.7%) interactions.


2015 ◽  
Vol 71 (9) ◽  
pp. o636-o636
Author(s):  
Nadiah Ameram ◽  
Farook Adam

In the title compound, C16H17N3OS, a benzoyl thiourea derivative, the planes of the pyridine and benzene rings are inclined to one another by 66.54 (9)°. There is an intramolecular N—H...O hydrogen bond present forming anS(6) ring motif. In the crystal, molecules are linkedviapairs of N—H...N hydrogen bonds, forming inversion dimers, which are reinforced by pairs of C—H...S hydrogen bonds. The dimers are linkedviaC—H...π interactions, forming ribbons along [010].


Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


2012 ◽  
Vol 68 (4) ◽  
pp. o1084-o1084
Author(s):  
D. Kannan ◽  
M. Bakthadoss ◽  
R. Madhanraj ◽  
S. Murugavel

In the title compound, C25H22N2O3S, the sulfonyl-bound benzene ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formylbenzene and methylbenzene rings. The molecular conformation is stabilized by an intramolecular C—H...O hydrogen bond, which generates anS(5) ring motif. The crystal packing is stabilized by C—H...O hydrogen bonds, which generateC(11) chains along thebaxis. The crystal packing is further stabilized by π–π interactions [centroid–centroid distance = 3.927 (2) Å].


2012 ◽  
Vol 68 (8) ◽  
pp. o2574-o2574 ◽  
Author(s):  
B. Thimme Gowda ◽  
Sabine Foro ◽  
Sharatha Kumar

In the crystal structure of the title compound, C10H12N2OS, the conformation of the two N—H bonds areantito each other. The amide C=O and the C=S are are alsoantito each other. The N—H bond adjacent to the benzene ring issynto them-methyl groups. The dihedral angle between the benzene ring and the side chain [mean plane of atoms C—C(O)N—C—N; maximum deviation 0.029 (2) Å] is 14.30 (7)°. There is an intramolecular N—H...O hydrogen bond generating anS(6) ring motif. In the crystal, the molecules are linkedviaN—H...) hydrogen bonds, forming chains propagating along [001]. The S atom is disordered and was refined using a split model [occupancy ratio 0.56 (4):0.44 (4)].


2014 ◽  
Vol 70 (7) ◽  
pp. o742-o742
Author(s):  
Vedavalli Sairaj ◽  
Thothadri Srinivasan ◽  
Muthusamy Kandaswamy ◽  
Devadasan Velmurugan

In the title compound, C17H18N2O, the aromatic rings are almost normal to one another, making a dihedral angle of 89.00 (8)°. There is an intramolecular N—H...O hydrogen bond in the molecule enclosing anS(6) ring motif. In the crystal, molecules are linked by N—H...O hydrogen bonds, forming chains along [010].


2015 ◽  
Vol 71 (12) ◽  
pp. 1545-1547
Author(s):  
Koji Kubono ◽  
Kimiko Kado ◽  
Yukiyasu Kashiwagi ◽  
Keita Tani ◽  
Kunihiko Yokoi

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intramolecular O—H...N hydrogen bond involving the hydroxy group and a pyridine N atom forming anS(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds forming inversion dimers with anR44(10) ring motif. The dimers are linked by C—H...N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H...π and π–π interactions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).


2015 ◽  
Vol 71 (5) ◽  
pp. o357-o358
Author(s):  
Zhengyi Li ◽  
Song Shi ◽  
Kun Zhou ◽  
Liang Chen ◽  
Xiaoqiang Sun

The title compound, C17H17NO3, prepared by the condensation reaction of 2-(1,3-dioxan-2-yl)aniline and salicylaldehyde, has anEconformation about the C=N bond. The six-membered O-heterocycle adopts a chair conformation, with the bond to the aromatic ring located at its equatorial position. The dihedral angle between the aromatic rings is 36.54 (9)°. There is an intramolecular N—H...O hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains along thea-axis direction. Within the chains, there are C—H...π interactions involving adjacent molecules.


Sign in / Sign up

Export Citation Format

Share Document