scholarly journals 1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]indoline-2,3-dione

2014 ◽  
Vol 70 (5) ◽  
pp. o588-o588 ◽  
Author(s):  
Fatima-Zahrae Qachchachi ◽  
Youssef Kandri Rodi ◽  
El Mokhtar Essassi ◽  
Michael Bodensteiner ◽  
Lahcen El Ammari

In the title compound, C18H14N4O2, the triazole ring makes dihedral angles of 77.32 (8) and 75.56 (9)°, respectively, with the indoline residue and the terminal phenyl group. In the crystal, molecules are linked by C—H...N hydrogen bonds into tapes parallel to thebaxis. The tapes are linked together by π–π interactions between triazole rings [inter-centroid distance = 3.4945 (9) Å].

2009 ◽  
Vol 65 (6) ◽  
pp. o1260-o1260
Author(s):  
Hai-Ying Wang ◽  
Jian-Ping Ma ◽  
Ru-Qi Huang ◽  
Yu-Bin Dong

In the title compound, C16H15N3O2·H2O, the two benzene rings and the triazole ring lie almost in the same plane, the triazole ring forming dihedral angles of 5.07 (9) and 5.80 (8)° with the benzene rings. In the crystal, there are three relatively strong intermolecular O—H...N and N—H...O hydrogen bonds, which lead to the formation of a one-dimensional double chain running parallel to theaaxis. Weak π—π interactions between the benzene rings of neighboring chains with a centroid–centroid distance of 3.893 (4) Å result in the formation of layers parallel to theacplane.


2015 ◽  
Vol 71 (12) ◽  
pp. 1545-1547
Author(s):  
Koji Kubono ◽  
Kimiko Kado ◽  
Yukiyasu Kashiwagi ◽  
Keita Tani ◽  
Kunihiko Yokoi

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intramolecular O—H...N hydrogen bond involving the hydroxy group and a pyridine N atom forming anS(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds forming inversion dimers with anR44(10) ring motif. The dimers are linked by C—H...N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H...π and π–π interactions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).


Author(s):  
R. A. Nagalakshmi ◽  
J. Suresh ◽  
S. Maharani ◽  
R. Ranjith Kumar ◽  
P. L. Nilantha Lakshman

In the title compound C22H18BrN3, the cyclopentane ring adopts an envelope conformation with the central methylene C atom as the flap. The dihedral angles between the central pyridine ring and the pendant benzyl and and bromobenzene rings are 82.65 (1) and 47.23 (1)°, respectively. In the crystal, inversion dimers linked by pairs of N—H...Nn(n = nitrile) hydrogen bonds generateR22(12) loops. These dimers are linked by weak π–π interactions [centroid–centroid distance = 3.7713 (14) Å] into a layered structure.


IUCrData ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jianchao Xu ◽  
Hewen Wang

In the title compound, C19H20N4OS, the 1,2,4-triazole ring forms dihedral angles of 58.64 (9) and 87.68 (9)° with the phenyl rings, which are inclined to one another by 43.30 (6)°. In the crystal, molecules are linked by N—H...O, N—H...S and C—H...S hydrogen bonds, forming chains propagating along thec-axis direction. Neighbouring chains are linked by three C—H...π interactions, forming layers parallel to thebcplane. Finally, the layers are linked by a fourth C—H...π interaction, forming a three-dimensional network.


2014 ◽  
Vol 70 (8) ◽  
pp. o881-o882
Author(s):  
Cai-Xia Yuan ◽  
Shu-Fen Lan ◽  
Xin-Yu Liu ◽  
Miao-Li Zhu

The title compound, C11H11BrN4OS, crystallized as a racemic twin with two symmetry-independent molecules in the asymmetric unit. The dihedral angles between the benzene and triazole rings of the two independent molecules are 56.41 (18) and 54.48 (18)°. An intramolecular O—H...N hydrogen bond occurs in each molecule. In the crystal, pairs of symmetry-independent molecules are linked by pairs of almost linear N—H...S hydrogen bonds, forming cyclic dimers characterized by anR22(8) motif. There are weak π–π interactions between the benzene rings of symmetry-independent molecules, with a centroid–centroid distance of 3.874 (3) Å.


2013 ◽  
Vol 69 (2) ◽  
pp. o174-o174 ◽  
Author(s):  
M. Prabhuswamy ◽  
S. Madan Kumar ◽  
C. P. Muneer ◽  
P. M. Shafi ◽  
N. K. Lokanath

In the title compound, C18H17N3O·0.5C2H5OH, the dihedral angles between the central imidazole rings and the pendant benzene rings are 42.06 (15) and 2.01 (16)° in one asymmetric molecule and 47.91 (15) and 7.31 (14)° in the other. An intramolecular N—H...O hydrogen bond occurs in each imidazole molecule. In the crystal, the components are connected by O—H...N, N—H...O, C—H...O and N—H...N hydrogen bonds. Weak aromatic π–π interactions also occur [shortest centroid–centroid distance = 3.684 (3) Å].


2015 ◽  
Vol 71 (10) ◽  
pp. o784-o785
Author(s):  
Ryan L. Lehane ◽  
James A. Golen ◽  
Arnold L. Rheingold ◽  
David R. Manke

In the title compound, C16H13NO4, the carbazole ring system is almost planar with non-H atoms possessing a mean deviation from planarity of 0.037 Å. The two ester groups are orientatedtransto one another and tilted slightly from the mean plane of the carbazole ring system, making dihedral angles of 8.12 (6) and 8.21 (5)°. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds forming inversion dimers. The dimers are linked by parallel slipped π–π interactions, forming slabs propagating along theb-axis direction [inter-centroid distance = 3.6042 (8) Å, inter-planar distance = 3.3437 (5) Å, slippage = 1.345 Å].


Author(s):  
S. Naveen ◽  
G. Pavithra ◽  
Muneer Abdoh ◽  
K. Ajay Kumar ◽  
Ismail Warad ◽  
...  

In the title compound, C15H15N3S2, the central pyrazole ring adopts a twisted conformation on the –CH—CH2– bond. Its mean plane makes dihedral angles of 7.19 (12) and 71.13 (11)° with those of the thiophene and toluene rings, respectively. The carbothiamide group [C(=S)—N] is inclined to the pyrazole ring mean plane by 16.8 (2)°. In the crystal, molecules are linked by N—H...S hydrogen bonds, forming chains propagating along [010]. Within the chains, there are N—H...π interactions present. Between the chains there are weak parallel slipped π–π interactions involving inversion-related thiophene and pyrazole rings [inter-centroid distance = 3.7516 (14) Å; inter-planar distance = 3.5987 (10) Å; slippage = 1.06 Å].


2009 ◽  
Vol 65 (6) ◽  
pp. o1443-o1443 ◽  
Author(s):  
Hong Dae Choi ◽  
Pil Ja Seo ◽  
Byeng Wha Son ◽  
Uk Lee

In the title compound, C24H16O2S, the O atom and the phenyl group of the phenylsulfinyl substituent lie on opposite sides of the plane of the naphthofuran fragment; the phenyl ring is almost perpendicular to this plane [82.34 (5)°]. The 2-phenyl ring is rotated out of the naphthofuran plane making a dihedral angle of 48.21 (6)°. The crystal structure shows π–π interactions between the central benzene rings of adjacent molecules [centroid–centroid distance = 3.516 (3) Å], as well as non-classical C—H...O hydrogen bonds.


2015 ◽  
Vol 71 (4) ◽  
pp. o231-o232 ◽  
Author(s):  
Rajamani Raja ◽  
Subramani Kandhasamy ◽  
Paramasivam T. Perumal ◽  
A. SubbiahPandi

In the title compound, C20H14BrN3O3, the benzene ring makes dihedral angles of 71.30 (11) and 68.95 (14)° with the naphthalene ring system and the triazole ring, respectively. The latter two ring systems are coplanar, with a dihedral angle of 2.92 (12)°. The O atoms deviate from the naphthalene ring system by 0.029 (2) and −0.051 (2) Å. In the crystal, molecules are linked by C—H...O and C—H...N hydrogen bonds, forming ribbons parallel to (10-1). The ribbons are linkedviaC—H...O and π–π stacking interactions [centroid–centroid distance = 3.4451 (14) Å], forming slabs parallel to thebcplane.


Sign in / Sign up

Export Citation Format

Share Document