scholarly journals Crystal structure of ethyl 2-acetyl-3,7-dimethyl-5-(thiophen-2-yl)-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate

2015 ◽  
Vol 71 (7) ◽  
pp. o477-o478
Author(s):  
N. L. Prasad ◽  
M. S. Krishnamurthy ◽  
Noor Shahina Begum

In the title compound, C17H18N2O3S2, the pyrimidine ring adopts a shallow sofa conformation, with the C atom bearing the axially-oriented thiophene ring as the flap [deviation = 0.439 (3) Å]. The plane of the thiophene ring lies almost normal to the pyrimidine ring, making a dihedral angle of 79.36 (19)°. In the crystal, pairs of very weak C—H...O hydrogen bonds link the molecules related by twofold rotation axes, formingR22(18) rings, which are in turn linked by another C—H...O interaction, forming chains of rings along [010]. In addition, weak C—H...π(thiophene) interactions link the chains into layers parallel to [001] and π–π interactions with a centroid–centroid distance of 3.772 (10) Å connect these layers into a three-dimensional network.

2014 ◽  
Vol 70 (11) ◽  
pp. o1144-o1145
Author(s):  
Nadia G. Haress ◽  
Hazem A. Ghabbour ◽  
Ali A. El-Emam ◽  
C. S. Chidan Kumar ◽  
Hoong-Kun Fun

In the molecule of the title compound, C7H9ClN2O2, the conformation is determined by intramolecular C—H...O and C—H...Cl hydrogen bonds, which generateS(6) andS(5) ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of −70.8 (3) and 56.0 (3)°. In the crystal, two inversion-related molecules are linkedviaa pair of N—H...O hydrogen bonds intoR22(8) dimers; these dimers are connected into chains extending along thebcplaneviaan additional N—H...O hydrogen bond and weaker C—H...O hydrogen bonds. The crystal structure is further stabilized by a weak π–π interaction [3.6465 (10) Å] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network.


2015 ◽  
Vol 71 (8) ◽  
pp. o621-o622
Author(s):  
Hong Dae Choi ◽  
Uk Lee

In the title compound, C15H10ClFO2S, the dihedral angle between the mean planes of the benzofuran ring [r.m.s. deviation = 0.007 (1) Å] and the 2-fluorophenyl ring is 32.53 (5)°. In the crystal, molecules related by inversion are paired into dimersviatwo different C—H...O hydrogen bonds. Further, Cl...O halogen bonds [3.114 (1) Å], and F...π [F-to-furan-centroid distance = 3.109 (1) Å] and S...F [3.1984 (9) Å] interactions link these into a three-dimensional network.


2015 ◽  
Vol 71 (5) ◽  
pp. o268-o269 ◽  
Author(s):  
M. S. Krishnamurthy ◽  
Noor Shahina Begum

In the title compound, C14H14F4N2O3S, the central dihydropyrimidine ring adopts a sofa conformation with the C atom bearing the 2-fluorobenzene ring displaced by 0.596 (3) Å from the other five atoms. The 2-fluorobenzene ring is positioned axially and bisects the pyrimidine ring with a dihedral angle of 70.92 (8)°. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond, generating anS(6) ring. The crystal structure features C—H...F, N—H...S and N—H...O hydrogen bonds, which link the molecules into a three-dimensional network.


2016 ◽  
Vol 72 (8) ◽  
pp. 1219-1222
Author(s):  
Md. Serajul Haque Faizi ◽  
Musheer Ahmad ◽  
Akram Ali ◽  
Vadim A. Potaskalov

The molecular shape of the title compound, C16H12O7, is bent around the central CH2—O bond. The two benzene rings are almost perpendicular to one another, making a dihedral angle of 87.78 (7)°. In the crystal, each molecule is linked to three others by three pairs of O—H...O hydrogen bonds, forming undulating sheets parallel to thebcplane and enclosingR22(8) ring motifs. The sheets are linked by C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional network.


Author(s):  
R. A. Nagalakshmi ◽  
J. Suresh ◽  
S. Maharani ◽  
R. Ranjith Kumar ◽  
P. L. Nilantha Lakshman

The title compound, C23H21N3, comprises a 2-amino-3-cyanopyridine ring fused with a cyclopentane ring. The later adopts an envelope conformation with the central methylene C atom as the flap. The benzyl and andp-tolyl rings are inclined to one another by 56.18 (15)°, and to the pyridine ring by 81.87 (14) and 47.60 (11)°, respectively. In the crystal, molecules are linked by pairs of N—H...Nnitrilehydrogen bonds, forming inversion dimers with anR22(12) ring motif. The dimers are linked by C—H...π and π–π interactions [centroid–centroid distance = 3.7211 (12) Å], forming a three-dimensional framework.


2014 ◽  
Vol 70 (10) ◽  
pp. o1130-o1130 ◽  
Author(s):  
Wataru Furukawa ◽  
Munenori Takehara ◽  
Yoshinori Inoue ◽  
Chitoshi Kitamura

In an attempt to brominate 1,4-dipropoxy-9,10-anthraquinone, a mixture of products, including the title compound, C14H7BrO4, was obtained. The molecule is essentially planar (r.m.s. deviation = 0.029 Å) and two intramolecular O—H...O hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H...O hydrogen bonds, Br...O contacts [3.240 (5) Å], and π–π stacking interactions [shortest centroid–centroid separation = 3.562 (4) Å], generating a three-dimensional network.


2014 ◽  
Vol 70 (5) ◽  
pp. o553-o553
Author(s):  
C. N. Sundaresan ◽  
Dheeraj Kumar Singh ◽  
Jagadeesh Babu Nanubolu

In the title compound, C8H9N4S+·Cl−·H2O, the cation is approximately planar, with a dihedral angle of 7.71 (8)° between the mean planes of the benzoimidazole ring system and the thiourea unit. In the crystal, cations, anions and water molecules of crystallization are linked by O—H...Cl, N—H...O, N—H...Cl and N—H...S hydrogen bonds into a three-dimensional network. π–π stacking is observed between the benzene and imidazole rings of neighbouring molecules, the centroid–centroid distance being 3.5774 (11) Å.


2015 ◽  
Vol 71 (10) ◽  
pp. o719-o720 ◽  
Author(s):  
Tomohiko Ishii ◽  
Tatsuya Senoo ◽  
Akihide Yoshihara ◽  
Kazuhiro Fukada ◽  
Genta Sakane

The title compound, C6H12O6, was crystallized from an aqueous solution of equimolar mixture of D- and L-fructose (1,3,4,5,6-pentahydroxyhexan-2-one,arabino-hexulose or levulose), and it was confirmed that D-fructose (or L-fructose) formed β-pyranose with a2C5(or5C2) conformation. In the crystal, two O—H...O hydrogen bonds between the hydroxy groups at the C-1 and C-3 positions, and at the C-4 and C-5 positions connect homochiral molecules into a column along theaaxis. The columns are linked by other O—H...O hydrogen bonds between D- and L-fructose molecules, forming a three-dimensional network.


2014 ◽  
Vol 70 (9) ◽  
pp. o1029-o1030
Author(s):  
Hakima Chicha ◽  
El Mostapha Rakib ◽  
Latifa Bouissane ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å) by 65.07 (8)°. The allyl and ethoxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N—N—C—C = 111.6 (2) and C—C—O—C = −88.1 (2)°]. In the crystal, molecules are connected by N—H...N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C—H...O hydrogen bonds, forming a three-dimensional network.


2014 ◽  
Vol 70 (10) ◽  
pp. o1106-o1106
Author(s):  
Yong-Le Zhang ◽  
Chuang Zhang ◽  
Wei Guo ◽  
Jing Wang

In the title compound, C9H9N3OS, the plane of the benzene ring forms a dihedral angle of 33.40 (5)° with that of the triazole group. In the crystal, molecules are linked by O—H...N hydrogen bonds involving the phenol –OH group and one of the unsubstituted N atoms of the triazole ring, resulting in chains along [010]. These chains are further extended into a layer parallel to (001) by weak C—H...N hydrogen-bond interactions. Aromatic π–π stacking [centroid–centroid separation = 3.556 (1) Å] between the triazole rings links the layers into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document