scholarly journals Crystal structure of (ferrocenylmethyl)dimethylammonium hydrogen oxalate

Author(s):  
Mamadou Ndiaye ◽  
Abdoulaye Samb ◽  
Libasse Diop ◽  
Thierry Maris

The crystal structure of the title salt, [Fe(C5H5)(C8H13N)](HC2O4), consists of discrete (ferrocenylmethyl)dimethylammonium cations and hydrogen oxalate anions. The anions are connected through a strong O—H...O hydrogen bond, forming linear chains running parallel to [100]. The cations are linked to the anions through bifurcated N—H...(O,O′) hydrogen bonds. Weak C—H...π interactions between neighbouring ferrocenyl moieties are also observed.

Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


2015 ◽  
Vol 71 (11) ◽  
pp. o828-o829
Author(s):  
Dongsoo Koh

In the title compound, C20H18N2O2, the central pyrazoline ring has an envelope conformation with the atom substituted by the naphthalene ring as the flap. It bridges a benzene ring and a naphthalene ring system which are almost normal to one another, making a dihedral angle of 82.03 (6) °. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linked by pairs of N—H...π interactions, forming inversion dimers. There are also C—H...π interactions present and the dimers are linkedviaC—H...O hydrogen bonds, forming ribbons propagating along thea-axis direction.


2015 ◽  
Vol 71 (12) ◽  
pp. o1000-o1001 ◽  
Author(s):  
Nadir Ghichi ◽  
Mohamed Amine Benaouida ◽  
Ali Benboudiaf ◽  
Hocine Merazig

In the title compound, C20H16N2O4, the molecule adopts anEconformation about the N=C bond. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. The nitrobenzene and benzyloxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11)°, respectively, and to one another by 31.40 (12)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming zigzag chains along [001]. Within the chains there are C—H...π interactions present. The chains are linkedviaπ–π interactions [inter-centroid distance = 3.7048 (15) Å], forming slabs parallel to thebcplane.


2015 ◽  
Vol 71 (9) ◽  
pp. o636-o636
Author(s):  
Nadiah Ameram ◽  
Farook Adam

In the title compound, C16H17N3OS, a benzoyl thiourea derivative, the planes of the pyridine and benzene rings are inclined to one another by 66.54 (9)°. There is an intramolecular N—H...O hydrogen bond present forming anS(6) ring motif. In the crystal, molecules are linkedviapairs of N—H...N hydrogen bonds, forming inversion dimers, which are reinforced by pairs of C—H...S hydrogen bonds. The dimers are linkedviaC—H...π interactions, forming ribbons along [010].


Author(s):  
Ying Liang ◽  
Li-Qiao Shi ◽  
Zi-Wen Yang

In the title compound, C19H13ClF2N2O2, the conformation of the N—H bond in the amide segment isantito the C=O bond. The molecule is not planar, with dihedral angles between the central benzene ring and the outer benzene and pyridyl rings of 73.35 (7) and 81.26 (6)°, respectively. A weak intramolecular C—H...O hydrogen bond occurs. In the crystal, N—H...N, C—H...O and C—H...F hydrogen bonds lead to the formation of dimers. The N—H...N inversion dimers are linked by π–π contacts between adjacent pyridine rings [centroid–centroid = 3.8541 (12) Å] and C—H...π interactions. These contacts combine to stack the molecules along theaaxis.


2015 ◽  
Vol 71 (12) ◽  
pp. o991-o992
Author(s):  
Kamel Ouari

In the title compound, C12H8BrN3O, the 4-bromophenol ring is coplanar with the planar imidazo[4,5-b]pyridine moiety (r.m.s deviation = 0.015 Å), making a dihedral angle of 1.8 (2)°. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linkedviaN—H...N and O—H...Br hydrogen bonds, forming undulating sheets parallel to (10-2). The sheets are linked by π–π interactions [inter-centroid distance = 3.7680 (17) Å], involving inversion-related molecules, forming a three-dimensional structure.


2015 ◽  
Vol 71 (12) ◽  
pp. 1545-1547
Author(s):  
Koji Kubono ◽  
Kimiko Kado ◽  
Yukiyasu Kashiwagi ◽  
Keita Tani ◽  
Kunihiko Yokoi

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intramolecular O—H...N hydrogen bond involving the hydroxy group and a pyridine N atom forming anS(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds forming inversion dimers with anR44(10) ring motif. The dimers are linked by C—H...N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H...π and π–π interactions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).


2015 ◽  
Vol 71 (5) ◽  
pp. o357-o358
Author(s):  
Zhengyi Li ◽  
Song Shi ◽  
Kun Zhou ◽  
Liang Chen ◽  
Xiaoqiang Sun

The title compound, C17H17NO3, prepared by the condensation reaction of 2-(1,3-dioxan-2-yl)aniline and salicylaldehyde, has anEconformation about the C=N bond. The six-membered O-heterocycle adopts a chair conformation, with the bond to the aromatic ring located at its equatorial position. The dihedral angle between the aromatic rings is 36.54 (9)°. There is an intramolecular N—H...O hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains along thea-axis direction. Within the chains, there are C—H...π interactions involving adjacent molecules.


2014 ◽  
Vol 70 (12) ◽  
pp. o1292-o1292 ◽  
Author(s):  
Nadir Ghichi ◽  
Ali Benboudiaf ◽  
Hocine Merazig

In the title compound, C20H17NO3, the methylidenecyclohexa-2,4-dienone moiety is approximately planar [maximum deviation = 0.0615 (10) Å] and is oriented at diherdral angles of 69.60 (7) and 1.69 (9)° to the phenyl and hydroxybenzene rings, respectively. The amino group links with the carbonyl O atomviaan intramolecular N—H...O hydrogen bond, forming anS(6) ring motif. In the crystal, the molecules are linked by O—H...O hydrogen bonds and weak C—H...O and C—H...π interactions, forming a three-dimensional supramolecular architecture.


Author(s):  
Md. Serajul Haque Faizi ◽  
Ashanul Haque ◽  
Necmi Dege ◽  
Syed Imran Hasan ◽  
Mustafa Dege ◽  
...  

In the title biphenyl derivative, C12H9N3O4, the dihedral angle between the benzene rings is 52.84 (10)°. The nitro group attached to the benzene ring is inclined to the ring by 4.03 (2)°, while the nitro group attached to the amino-substituted benzene ring is inclined to the ring by 8.84 (2)°. In the crystal, molecules are linked by two pairs of N—H...O hydrogen bonds, forming chains propagating along [101]. Within the chains, these N—H...O hydrogen bonds result in the formation ofR22(20) andR22(14) ring motifs. The latter ring motif is reinforced by a pair of C—H...O hydrogen bonds, enclosingR21(6) ring motifs. The chains are linked by a second C—H...O hydrogen bond, forming a three-dimensional supramolecular structure.


Sign in / Sign up

Export Citation Format

Share Document