scholarly journals Crystal structure of diethyl 2-acetoxy-2-[3-(4-nitrophenyl)-3-oxo-1-phenylpropyl]malonate

Author(s):  
Nóra Veronika May ◽  
Gyula Tamás Gál ◽  
Zsolt Rapi ◽  
Péter Bakó

In the racemic title compound, C24H25NO9, the dihedral angle between the planes of the two benzene-ring systems is 80.16 (6)°, while the side-chain conformation is stabilized by a methylene–carboxyl C—H...O hydrogen bond. Weak intermolecular C—H...O hydrogen bonds form inversion dimers [graph setR22(16)] which are linked into chains extending alonga. Further C—H...O hydrogen bonding extends the structure alongbthrough cyclicR22(10) motifs. Although no π–π aromatic ring interactions are present in the structure, C—H...π ring interactions acrosscgenerate an overall three-dimensional supramolecular structure.

Author(s):  
Takeshi Oishi ◽  
Mayu Kidena ◽  
Tomoya Sugai ◽  
Takaaki Sato ◽  
Noritaka Chida

In the title compound, C10H14Cl3NO5, the five-membered dioxolane ring adopts an envelope conformation with the C atom bonded to the butenoate side chain as the flap. It deviates from the mean plane of the other atoms in the ring by 0.446 (6) Å. In the crystal, molecules are connected by O—H...O hydrogen bonds into helical chains running along theb-axis direction. The chains are linked into a sheet structure parallel to (001) by an N—H...O hydrogen bond. These classical hydrogen bonds enclose anR44(24) graph-set motif in the sheet structure. Furthermore, a weak intermolecular C—H...Cl interaction expands the sheet structures into a three-dimensional network.


Author(s):  
Sannyele Alcantara Emiliano ◽  
Sheyla Welma Duarte Silva ◽  
Mariano Alves Pereira ◽  
Valeria R.dos Santos Malta ◽  
Tatiane Luciano Balliano

In the structure of the title compound, C14H12O3, the substituent side chain, in which the H atoms of both methyl groups are disordered over six equivalent sites, lies outside of the plane of the naphthalenedione ring. The ring-to-chain C—C—C—C torsion angles are 50.7 (3), −176.6 (2) and 4.9 (4)°. An intramolecular methyl–hydroxy C—H...O hydrogen bond is present. In the crystal, molecules are primarily connected by intermolecular O—H...O hydrogen bonds, forming a centrosymmetric cyclic dimer motif [graph setR22(10)]. Also present is a weak intermolecular C—H...O hydrogen bond linking the dimers and a weak π–π ring interaction [ring centroid separation = 3.7862 (13) Å], giving layers parallel to (10-3).


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


2015 ◽  
Vol 71 (12) ◽  
pp. o991-o992
Author(s):  
Kamel Ouari

In the title compound, C12H8BrN3O, the 4-bromophenol ring is coplanar with the planar imidazo[4,5-b]pyridine moiety (r.m.s deviation = 0.015 Å), making a dihedral angle of 1.8 (2)°. There is an intramolecular O—H...N hydrogen bond forming anS(6) ring motif. In the crystal, molecules are linkedviaN—H...N and O—H...Br hydrogen bonds, forming undulating sheets parallel to (10-2). The sheets are linked by π–π interactions [inter-centroid distance = 3.7680 (17) Å], involving inversion-related molecules, forming a three-dimensional structure.


2014 ◽  
Vol 70 (10) ◽  
pp. o1106-o1106
Author(s):  
Yong-Le Zhang ◽  
Chuang Zhang ◽  
Wei Guo ◽  
Jing Wang

In the title compound, C9H9N3OS, the plane of the benzene ring forms a dihedral angle of 33.40 (5)° with that of the triazole group. In the crystal, molecules are linked by O—H...N hydrogen bonds involving the phenol –OH group and one of the unsubstituted N atoms of the triazole ring, resulting in chains along [010]. These chains are further extended into a layer parallel to (001) by weak C—H...N hydrogen-bond interactions. Aromatic π–π stacking [centroid–centroid separation = 3.556 (1) Å] between the triazole rings links the layers into a three-dimensional network.


Author(s):  
Sevim Türktekin Çelikesir ◽  
Mehmet Akkurt ◽  
Aliasghar Jarrahpour ◽  
Habib Allah Shafie ◽  
Ömer Çelik

In the title compound, C22H18N2O5, the central β-lactam ring (r.m.s. deviation = 0.002 Å) makes dihedral angles of 64.21 (14), 82.35 (12) and 20.66 (13)° with the phenyl ring and the nitro- and methoxybenzene rings, respectively. The molecular structure is stabilized by an intramolecular C—H...O hydrogen bond. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming slabs lying parallel to (111). The slabs are linkedviaC—H...π interactions, forming a three-dimensional network.


2012 ◽  
Vol 68 (8) ◽  
pp. o2574-o2574 ◽  
Author(s):  
B. Thimme Gowda ◽  
Sabine Foro ◽  
Sharatha Kumar

In the crystal structure of the title compound, C10H12N2OS, the conformation of the two N—H bonds areantito each other. The amide C=O and the C=S are are alsoantito each other. The N—H bond adjacent to the benzene ring issynto them-methyl groups. The dihedral angle between the benzene ring and the side chain [mean plane of atoms C—C(O)N—C—N; maximum deviation 0.029 (2) Å] is 14.30 (7)°. There is an intramolecular N—H...O hydrogen bond generating anS(6) ring motif. In the crystal, the molecules are linkedviaN—H...) hydrogen bonds, forming chains propagating along [001]. The S atom is disordered and was refined using a split model [occupancy ratio 0.56 (4):0.44 (4)].


2007 ◽  
Vol 63 (3) ◽  
pp. o1289-o1290 ◽  
Author(s):  
Jin-Zhou Li ◽  
Heng-Qiang Zhang ◽  
Hong-Xin Li ◽  
Pi-Zhi Che ◽  
Tian-Chi Wang

The crystal structure of the title compound, C18H11ClN2O4, contains intra- and intermolecular hydrogen bonds that link the ketone and hydroxyl groups. The intermolecular hydrogen bond results in the formation of a dimer with an R 2 2(12) graph-set motif.


2014 ◽  
Vol 70 (12) ◽  
pp. o1292-o1292 ◽  
Author(s):  
Nadir Ghichi ◽  
Ali Benboudiaf ◽  
Hocine Merazig

In the title compound, C20H17NO3, the methylidenecyclohexa-2,4-dienone moiety is approximately planar [maximum deviation = 0.0615 (10) Å] and is oriented at diherdral angles of 69.60 (7) and 1.69 (9)° to the phenyl and hydroxybenzene rings, respectively. The amino group links with the carbonyl O atomviaan intramolecular N—H...O hydrogen bond, forming anS(6) ring motif. In the crystal, the molecules are linked by O—H...O hydrogen bonds and weak C—H...O and C—H...π interactions, forming a three-dimensional supramolecular architecture.


2012 ◽  
Vol 68 (6) ◽  
pp. o1848-o1849 ◽  
Author(s):  
Mohamed I. Attia ◽  
Mohamed N. Aboul-Enein ◽  
Nasser R. El-Brollosy ◽  
Seik Weng Ng ◽  
Edward R. T. Tiekink

In the title compound, C20H21N5O, the conformation about the imine bond [1.289 (3) Å] is E. Overall, the molecule is disk-shaped with the imidazole ring located above the remainder of the molecule and with the dihedral angles of 10.97 (15) and 12.11 (15)°, respectively, between the imidazole ring and the phenyl and methylbenzene rings; the dihedral angle between the aromatic rings is 8.17 (14)°. Within the urea unit, the N—H atoms are anti to each other and one of the N—H atoms forms an intramolecular N—H...N hydrogen bond. Helical supramolecular chains along [001] are formed via N—H...N(imidazole) hydrogen bonds in the crystal structure. These are connected into a three-dimensional architecture by C—H...O(carbonyl) and C—H...π interactions.


Sign in / Sign up

Export Citation Format

Share Document