scholarly journals Crystal structure and Hirshfeld surface analysis of (2E)-3-(3-bromo-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one

2018 ◽  
Vol 74 (8) ◽  
pp. 1063-1066 ◽  
Author(s):  
S. N. Sheshadri ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
M. K. Veeraiah ◽  
Ching Kheng Quah ◽  
...  

In the molecule of the title compound, C17H14BrFO3, the aromatic rings are tilted with respect to the enone bridge by 13.63 (14) and 4.27 (15)°, and form a dihedral angle 17.91 (17)°. In the crystal, centrosymmetrically related molecules are linked by pairs of C—H...O hydrogen bonds into dimeric units, forming rings of R 2 2(14) graph-set motif. The dimers are further connected by weak C—H...O hydrogen interactions, forming layers parallel to (10\overline{1}). Hirshfeld surface analysis shows that van der Waals interactions constitute the major contribution to the intermolecular interactions, with H...H contacts accounting for 29.7% of the surface.

Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl...H contact, C—Cl...π and van der Waals interactions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (33.3%), Cl...H/H...Cl (22.9%) and C...H/H...C (15.5%) interactions are the most important contributors towards the crystal packing.


2018 ◽  
Vol 74 (8) ◽  
pp. 1147-1150 ◽  
Author(s):  
Pinar Sen ◽  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The title compound, C26H36N2O2, crystallizes in the phenol–imine form. In the molecule, there are intramolecular O—H...N hydrogen bonds forming S(6) ring motifs, and the two aromatic rings are inclined to each other by 37.9 (7)°. In the crystal, molecules are linked by pairs of weak C—H...O hydrogen bonds, forming inversion dimers. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (77.5%), H...C/C...H (16%), H...O/O...H (3.1%) and H...N/N...H (1.7%) interactions.


Author(s):  
H. Purandara ◽  
S. Foro ◽  
B. Thimme Gowda

The asymmetric unit of the title compound, C15H13ClN4O5S·C3H7NO, contains one molecule each of the Schiff base and the solvent dimethylformamide. The hydrazone group adopts anEconfiguration about the C=N bond. The dihedral angle between the two aromatic rings is 86.58 (2)°. In the crystal, pairs of N—H...O hydrogen bonds between centrosymmetrically related molecules generates rings with anR22(10) graph-set motif. The dimers are further linkedviaN—H...O and C—H...O hydrogen bonds, leading to the formation ofR33(11) ring motifs. C—H...π interactions are also observed. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis, which indicates that the most significant contacts in packing are O...H/H...O (31.3%), followed by H...H (25.4%) and C...H/H...C (13.0%).


Author(s):  
Dmitriy F. Mertsalov ◽  
Vladimir P. Zaytsev ◽  
Kuzma M. Pokazeev ◽  
Mikhail S. Grigoriev ◽  
Alexander V. Bachinsky ◽  
...  

The title compound, C15H15Br2NO2, crystallizes with two molecules in the asymmetric unit of the unit cell. In both molecules, the tetrahydrofuran rings adopt an envelope conformation with the O atom as the flap and the pyrrolidine rings adopt an envelope conformation. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals interactions. The most important contributions to the surface contacts are from H...H (44.6%), Br...H/H...Br (24.1%), O...H/H...O (13.5%) and C...H/H...C (11.2%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Namiq Q. Shikhaliyev ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Ayten M. Qacar ◽  
Rizvan K. Askerov ◽  
...  

The asymmetric unit of the title compound, C16H14Cl2N2O, comprises two similar molecules, A and B, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°, respectively. The crystal structure features short C—H...Cl and C—H...O contacts and C—H...π and van der Waals interactions. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5). The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H...H (38.2% for molecule A; 36.0% for molecule B), Cl...H/H...Cl (24.6% for molecule A; 26.7% for molecule B) and C...H/H...C (20.0% for molecule A; 20.2% for molecule B) interactions are the most important contributors to the crystal packing.


Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Farid N. Naghiyev ◽  
Maria M. Grishina ◽  
Victor N. Khrustalev ◽  
Mehmet Akkurt ◽  
Afet T. Huseynova ◽  
...  

The molecular conformation of the title compound, C17H14ClN3O4, is stabilized by an intramolecular C—H...O contact, forming an S(6) ring motif. In the crystal, the molecules are connected by N—H...O hydrogen-bond pairs along the b-axis direction as dimers with R 2 2(8) and R 2 2(14) ring motifs and as ribbons formed by intermolecular C—H...N hydrogen bonds. There are weak van der Waals interactions between the ribbons. The most important contributions to the surface contacts are from H...H (34.9%), O...H/H...O (19.2%), C...H/H...C (11.9%), Cl...H/H...Cl (10.7%) and N...H/H...N (10.4%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Shaaban K. Mohamed ◽  
Awad I. Said ◽  
Joel T. Mague ◽  
Talaat I. El-Emary ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C33H26N4O4, the two fused five-membered rings and their N-bound aromatic substituents form a pincer-like motif. The relative conformations about the three chiral carbon atoms are established. In the crystal, a combination of C—H...O and C—H...N hydrogen bonds and C—H...π(ring) interactions leads to the formation of layers parallel to the bc plane. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H...H (44.3%), C...H/H...C (29.8%) and O...H/H...O (15.0%) contacts.


Sign in / Sign up

Export Citation Format

Share Document