scholarly journals Crystal structure and Hirshfeld surface analysis of 1-{[2-oxo-3-(prop-1-en-2-yl)-2,3-dihydro-1H-1,3-benzodiazol-1-yl]methyl}-3-(prop-1-en-2-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one

2018 ◽  
Vol 74 (12) ◽  
pp. 1746-1750 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Brahim Hni ◽  
Joel T. Mague ◽  
...  

In the title compound, C21H20N4O2, the intramolecular C—H...O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H...O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.8%), H...C/C...H (30.7%) and H...O/O...H (11.2%) interactions.

Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Author(s):  
Shaaban K. Mohamed ◽  
Awad I. Said ◽  
Joel T. Mague ◽  
Talaat I. El-Emary ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C33H26N4O4, the two fused five-membered rings and their N-bound aromatic substituents form a pincer-like motif. The relative conformations about the three chiral carbon atoms are established. In the crystal, a combination of C—H...O and C—H...N hydrogen bonds and C—H...π(ring) interactions leads to the formation of layers parallel to the bc plane. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H...H (44.3%), C...H/H...C (29.8%) and O...H/H...O (15.0%) contacts.


Author(s):  
K. Osahon Ogbeide ◽  
Rajesh Kumar ◽  
Mujeeb-Ur-Rehman ◽  
Bodunde Owolabi ◽  
Abiodun Falodun ◽  
...  

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl 3-phenylprop-2-enoate}, was isolated from a medicinally important plant,Caesalpinia pulcherrima(Fabaceae). In the molecule, three cyclohexane rings aretrans-fused and adopt chair, chair and half-chair conformations. In the crystal, molecules are linkedviaO—H...O hydrogen bonds, forming a tape structure along theb-axis direction. The tapes are further linked into a double-tape structure through C—H...π interactions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H...H (65.5%), C...H (18.7%), O...H (14.5%) and C...O (0.3%).


2020 ◽  
Vol 76 (9) ◽  
pp. 1535-1538
Author(s):  
M. Renugadevi ◽  
A. Sinthiya ◽  
Kumaradhas Poomani ◽  
Suganya Suresh

In the crystals of the title compound, C5H7N2 +·CNS−·C5H6N2, the components are linked by three N—H...N and two N—H...S hydrogen bonds, resulting in two interpenetrating three-dimensional networks. Hirshfeld surface analysis shows that the most important contributions to the crystal packing are from H...H (36.6%), C...H/H...C (20.4%), S...H/H...S (19.7%) and N...H/H...N (13.4%) interactions.


Author(s):  
Karim Chkirate ◽  
Sevgi Kansiz ◽  
Khalid Karrouchi ◽  
Joel T. Mague ◽  
Necmi Dege ◽  
...  

In the title compound, C10H8Cl2N2O, the seven-membered diazepine ring adopts a boat-shaped conformation. The mean planes of the two rings of the benzodiazepine unit are inclined to each other by 22.05 (6)°. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with anR22(8) ring motif. The dimers are linked by C—H...π interactions, forming layers lying parallel to (10\overline{1}). The roles of the intermolecular interactions in the crystal packing were clarified using Hirshfeld surface analysis; the most important contributions are from Cl...H/H...Cl (30.5%) and H...H (22.5%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Ulviyya F. Askerova ◽  
Sevinc H. Mukhtarova ◽  
Rizvan K. Askerov ◽  
...  

In the title compound, C15H12N2O3, pairs of molecules are linked into dimers by N—H...O hydrogen bonds, forming an R 2 2(12) ring motif, with the dimers stacked along the a axis. These dimers are connected through π–π stacking interactions between the centroids of the benzene and furan rings of their 2,3-dihydro-1-benzofuran ring systems. Furthermore, there exists a C—H...π interaction that consolidates the crystal packing. A Hirshfeld surface analysis indicates that the most important contacts are H...H (40.7%), O...H/H...O (24.7%), C...H/H...C (16.1%) and C...C (8.8%).


Author(s):  
Shaaban K. Mohamed ◽  
Joel T. Mague ◽  
Mehmet Akkurt ◽  
Farouq E. Hawaiz ◽  
Sahar M. I. Elgarhy ◽  
...  

In the crystal, the molecule of the title compound, C26H20N2O3, has crystallographically imposed twofold rotation symmetry. The crystal packing consists of layers parallel to the ab plane formed by O—H...N and C—H...O hydrogen bonds. Between the layers, C—H...π interactions are observed.


Author(s):  
Lhoussaine El Ghayati ◽  
Youssef Ramli ◽  
Tuncer Hökelek ◽  
Mohamed Labd Taha ◽  
Joel T. Mague ◽  
...  

The title compound, C20H17N3O3[systematic name: 2-(6-methyl-2,4-dioxopyran-3-ylidene)-4-(pyridin-4-yl)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine], is built up from a benzodiazepine ring system linked to pyridyl and pendant dihydropyran rings, where the benzene and pyridyl rings are oriented at a dihedral angle of 43.36 (6)°. The pendant dihydropyran ring is rotationally disordered in a 90.899 (3):0.101 (3) ratio with the orientation of each component largely determined by intramolecular N—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds. In the crystal, molecules are linked via pairs of weak intermolecular N—HDiazp...ODhydphydrogen bonds, forming inversion-related dimers withR22(26) ring motifs. The dimers are further connected along theb-axis direction by π–π stacking interactions between the pendant dihydropyran and pyridyl rings with centroid–centroid distances of 3.833 (3) Å and a dihedral angle of 14.51 (2)°. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (50.1%), H...C/C...H (17.7%), H...O/O...H (16.8%), C...C (7.7%) and H...N/N...H (5.3%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing.


2018 ◽  
Vol 74 (12) ◽  
pp. 1842-1846 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Mohamed El hafi ◽  
Joel T. Mague ◽  
...  

The title compound, C17H14N2O, is built up from the planar benzodiazole unit linked to the benzyl and propynyl substituents. The substituents are rotated significantly out of the benzodiazole plane, where the benzyl group is inclined by 68.91 (7)° to the benzodiazole unit. In the crystal, the molecules are linked via intermolecular C—HBnzdzl...O and C—HBnzy...O (Bnzdzl = benzodiazole and Bnzy = benzyl) hydrogen bonds, enclosing R 4 4(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane which are also stacked along the a-axis direction being associated through C—H...π (ring) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (43.6%), H...C/C...H (42.0%) and H...O/O...H (8.9%) interactions.


2018 ◽  
Vol 74 (8) ◽  
pp. 1147-1150 ◽  
Author(s):  
Pinar Sen ◽  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The title compound, C26H36N2O2, crystallizes in the phenol–imine form. In the molecule, there are intramolecular O—H...N hydrogen bonds forming S(6) ring motifs, and the two aromatic rings are inclined to each other by 37.9 (7)°. In the crystal, molecules are linked by pairs of weak C—H...O hydrogen bonds, forming inversion dimers. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (77.5%), H...C/C...H (16%), H...O/O...H (3.1%) and H...N/N...H (1.7%) interactions.


Sign in / Sign up

Export Citation Format

Share Document